Seismic multiple attenuation based on improved U-Net

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Applied Geophysics Pub Date : 2024-04-26 DOI:10.1007/s11770-024-1080-0
Quan Zhang, Xiao-yu Lv, Qin Lei, Bo Peng, Yan Li, Yao-wen Zhang
{"title":"Seismic multiple attenuation based on improved U-Net","authors":"Quan Zhang, Xiao-yu Lv, Qin Lei, Bo Peng, Yan Li, Yao-wen Zhang","doi":"10.1007/s11770-024-1080-0","DOIUrl":null,"url":null,"abstract":"<p>Effective attenuation of seismic multiples is a crucial step in the seismic data processing workflow. Despite the existence of various methods for multiple attenuation, challenges persist, such as incomplete attenuation and high computational requirements, particularly in complex geological conditions. Conventional multiple attenuation methods rely on prior geological information and involve extensive computations. Using deep neural networks for multiple attenuation can effectively reduce manual labor costs while improving the efficiency of multiple suppression. This study proposes an improved U-net-based method for multiple attenuation. The conventional U-net serves as the primary network, incorporating an attentional local contrast module to effectively process detailed information in seismic data. Emphasis is placed on distinguishing between seismic multiples and primaries. The improved network is trained using seismic data containing both multiples and primaries as input and seismic data containing only primaries as output. The effectiveness and stability of the proposed method in multiple attenuation are validated using two horizontal layered velocity models and the Sigsbee2B velocity model. Transfer learning is employed to endow the trained model with the capability to suppress multiples across seismic exploration areas, effectively improving multiple attenuation efficiency.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"84 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1080-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective attenuation of seismic multiples is a crucial step in the seismic data processing workflow. Despite the existence of various methods for multiple attenuation, challenges persist, such as incomplete attenuation and high computational requirements, particularly in complex geological conditions. Conventional multiple attenuation methods rely on prior geological information and involve extensive computations. Using deep neural networks for multiple attenuation can effectively reduce manual labor costs while improving the efficiency of multiple suppression. This study proposes an improved U-net-based method for multiple attenuation. The conventional U-net serves as the primary network, incorporating an attentional local contrast module to effectively process detailed information in seismic data. Emphasis is placed on distinguishing between seismic multiples and primaries. The improved network is trained using seismic data containing both multiples and primaries as input and seismic data containing only primaries as output. The effectiveness and stability of the proposed method in multiple attenuation are validated using two horizontal layered velocity models and the Sigsbee2B velocity model. Transfer learning is employed to endow the trained model with the capability to suppress multiples across seismic exploration areas, effectively improving multiple attenuation efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进型 U-Net 的地震多重衰减技术
有效衰减地震多重数据是地震数据处理工作流程中的关键步骤。尽管存在各种多重衰减方法,但挑战依然存在,如衰减不完全和计算要求高,尤其是在复杂地质条件下。传统的多重衰减方法依赖于先前的地质信息,并涉及大量计算。使用深度神经网络进行多重衰减可以有效降低人工成本,同时提高多重抑制的效率。本研究提出了一种基于 U-net 的改进型多重衰减方法。以传统的 U-net 为主网络,结合注意力局部对比模块,有效处理地震数据中的详细信息。重点是区分地震多级和初级。改进后的网络使用同时包含倍频和初频的地震数据作为输入,仅包含初频的地震数据作为输出进行训练。使用两个水平分层速度模型和 Sigsbee2B 速度模型验证了所提方法在多重衰减方面的有效性和稳定性。利用迁移学习赋予训练有素的模型抑制跨地震勘探区域多重性的能力,从而有效提高多重衰减效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
期刊最新文献
Earthquake detection probabilities and completeness magnitude in the northern margin of the Ordos Block Multi-well wavelet-synchronized inversion based on particle swarm optimization Low-Frequency Sweep Design—A Case Study in Middle East Desert Environments Research on Paleoearthquake and Recurrence Characteristics of Strong Earthquakes in Active Faults of Mainland China Capacity matching and optimization of solar-ground source heat pump coupling systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1