Vortex nonlinear optics in monolayer van der Waals crystals

Tenzin Norden, Luis M. Martinez, Nehan Tarefder, Kevin W. C. Kwock, Luke M. McClintock, Nicholas Olsen, Luke N. Holtzman, Xiaoyang Zhu, James C. Hone, Jinkyoung Yoo, Jian-Xin Zhu, P. James Schuck, Antoinette J. Taylor, Rohit P. Prasankumar, Wilton J. M. Kort-Kamp, Prashant Padmanabhan
{"title":"Vortex nonlinear optics in monolayer van der Waals crystals","authors":"Tenzin Norden, Luis M. Martinez, Nehan Tarefder, Kevin W. C. Kwock, Luke M. McClintock, Nicholas Olsen, Luke N. Holtzman, Xiaoyang Zhu, James C. Hone, Jinkyoung Yoo, Jian-Xin Zhu, P. James Schuck, Antoinette J. Taylor, Rohit P. Prasankumar, Wilton J. M. Kort-Kamp, Prashant Padmanabhan","doi":"arxiv-2404.14306","DOIUrl":null,"url":null,"abstract":"In addition to wavelength and polarization, coherent light possesses a degree\nof freedom associated with its spatial topology that, when exploited through\nnonlinear optics, can unlock a plethora of new photonic phenomena. A prime\nexample involves the use of vortex beams, which allow for the tuning of light's\norbital angular momentum (OAM) on demand. Such processes can not only reveal\nemergent physics but also enable high-density classical and quantum\ncommunication paradigms by allowing access to an infinitely large set of\northogonal optical states. Nevertheless, structured nonlinear optics have\nfailed to keep pace with the ever-present need to shrink the length-scale of\noptoelectronic and photonic technologies to the nanoscale regime. Here, we push\nthe boundaries of vortex nonlinear optics to the ultimate limits of material\ndimensionality. By exploiting second and third-order nonlinear frequency-mixing\nprocesses in van der Waals semiconductor monolayers, we show the free\nmanipulation of the wavelength, topological charge, and radial index of vortex\nlight-fields. We demonstrate that such control can be supported over a broad\nspectral bandwidth, unconstrained by traditional limits associated with bulk\nnonlinear optical (NLO) materials, due to the atomically-thin nature of the\nhost crystal. Our work breaks through traditional constraints in optics and\npromises to herald a new avenue for next-generation optoelectronic and\nphotonics technologies empowered by twisted nanoscale nonlinear light-matter\ninteractions.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to wavelength and polarization, coherent light possesses a degree of freedom associated with its spatial topology that, when exploited through nonlinear optics, can unlock a plethora of new photonic phenomena. A prime example involves the use of vortex beams, which allow for the tuning of light's orbital angular momentum (OAM) on demand. Such processes can not only reveal emergent physics but also enable high-density classical and quantum communication paradigms by allowing access to an infinitely large set of orthogonal optical states. Nevertheless, structured nonlinear optics have failed to keep pace with the ever-present need to shrink the length-scale of optoelectronic and photonic technologies to the nanoscale regime. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting second and third-order nonlinear frequency-mixing processes in van der Waals semiconductor monolayers, we show the free manipulation of the wavelength, topological charge, and radial index of vortex light-fields. We demonstrate that such control can be supported over a broad spectral bandwidth, unconstrained by traditional limits associated with bulk nonlinear optical (NLO) materials, due to the atomically-thin nature of the host crystal. Our work breaks through traditional constraints in optics and promises to herald a new avenue for next-generation optoelectronic and photonics technologies empowered by twisted nanoscale nonlinear light-matter interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层范德华晶体中的涡旋非线性光学
除了波长和偏振之外,相干光还拥有与其空间拓扑结构相关的自由度,通过非线性光学技术加以利用,可以释放出大量新的光子现象。一个典型的例子就是涡旋光束,它可以根据需要调整光的轨道角动量(OAM)。这种过程不仅能揭示新的物理现象,还能通过访问无限大的一组正交光学状态,实现高密度经典和量子通信范式。然而,结构非线性光学未能跟上将光电子和光子技术的长度尺度缩小到纳米尺度的迫切需求。在这里,我们将涡旋非线性光学的边界推向了材料维度的终极极限。通过利用范德华半导体单层中的二阶和三阶非线性混频过程,我们展示了对涡旋光场的波长、拓扑电荷和径向指数的自由操纵。我们证明了这种控制可以支持宽光谱带宽,而且由于寄主晶体原子级的超薄特性,这种控制不受与球状非线性光学(NLO)材料相关的传统限制的制约。我们的研究突破了光学领域的传统限制,有望为下一代光电技术开辟一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Label-Free Microscopy Characterization of Dielectric Nanoparticles Enwrapped Perylene Bisimide Enables Room Temperature Polariton Lasing and Photonic Lattices Chiral patterning of rough surfaces with vortex laser beams: from structured polarization to twisted forces Scaling of pseudospectra in exponentially sensitive lattices Surface Phonon Polariton Ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1