{"title":"HumourHindiNet: Humour detection in Hindi web series using word embedding and convolutional neural network","authors":"Akshi Kumar, Abhishek Mallik, Sanjay Kumar","doi":"10.1145/3661306","DOIUrl":null,"url":null,"abstract":"<p>Humour is a crucial aspect of human speech, and it is, therefore, imperative to create a system that can offer such detection. While data regarding humour in English speech is plentiful, the same cannot be said for a low-resource language like Hindi. Through this paper, we introduce two multimodal datasets for humour detection in the Hindi web series. The dataset was collected from over 500 minutes of conversations amongst the characters of the Hindi web series \\(Kota-Factory\\) and \\(Panchayat\\). Each dialogue is manually annotated as Humour or Non-Humour. Along with presenting a new Hindi language-based Humour detection dataset, we propose an improved framework for detecting humour in Hindi conversations. We start by preprocessing both datasets to obtain uniformity across the dialogues and datasets. The processed dialogues are then passed through the Skip-gram model for generating Hindi word embedding. The generated Hindi word embedding is then passed onto three convolutional neural network (CNN) architectures simultaneously, each having a different filter size for feature extraction. The extracted features are then passed through stacked Long Short-Term Memory (LSTM) layers for further processing and finally classifying the dialogues as Humour or Non-Humour. We conduct intensive experiments on both proposed Hindi datasets and evaluate several standard performance metrics. The performance of our proposed framework was also compared with several baselines and contemporary algorithms for Humour detection. The results demonstrate the effectiveness of our dataset to be used as a standard dataset for Humour detection in the Hindi web series. The proposed model yields an accuracy of 91.79 and 87.32 while an F1 score of 91.64 and 87.04 in percentage for the \\(Kota-Factory\\) and \\(Panchayat\\) datasets, respectively.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3661306","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Humour is a crucial aspect of human speech, and it is, therefore, imperative to create a system that can offer such detection. While data regarding humour in English speech is plentiful, the same cannot be said for a low-resource language like Hindi. Through this paper, we introduce two multimodal datasets for humour detection in the Hindi web series. The dataset was collected from over 500 minutes of conversations amongst the characters of the Hindi web series \(Kota-Factory\) and \(Panchayat\). Each dialogue is manually annotated as Humour or Non-Humour. Along with presenting a new Hindi language-based Humour detection dataset, we propose an improved framework for detecting humour in Hindi conversations. We start by preprocessing both datasets to obtain uniformity across the dialogues and datasets. The processed dialogues are then passed through the Skip-gram model for generating Hindi word embedding. The generated Hindi word embedding is then passed onto three convolutional neural network (CNN) architectures simultaneously, each having a different filter size for feature extraction. The extracted features are then passed through stacked Long Short-Term Memory (LSTM) layers for further processing and finally classifying the dialogues as Humour or Non-Humour. We conduct intensive experiments on both proposed Hindi datasets and evaluate several standard performance metrics. The performance of our proposed framework was also compared with several baselines and contemporary algorithms for Humour detection. The results demonstrate the effectiveness of our dataset to be used as a standard dataset for Humour detection in the Hindi web series. The proposed model yields an accuracy of 91.79 and 87.32 while an F1 score of 91.64 and 87.04 in percentage for the \(Kota-Factory\) and \(Panchayat\) datasets, respectively.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.