Marcelo Dumas Hahn, Paulo Simeão Carvalho and Frederico Alan de Oliveira Cruz
{"title":"Colour and temperature of the stars: a demonstration using Arduino","authors":"Marcelo Dumas Hahn, Paulo Simeão Carvalho and Frederico Alan de Oliveira Cruz","doi":"10.1088/1361-6552/ad3c89","DOIUrl":null,"url":null,"abstract":"Teaching the colour of stars is not as trivial as one might think. It can be challenging for students to grasp that the colour of stars follows a temperature sequence. This paper introduces a simple experimental setup for instructing the correlation between a star’s colour and its temperature. Furthermore, the experimental setup facilitates the exploration of the topic of colour addition, demonstrating to students how to replicate the colour of a star—a spectrum colour—by employing an RGB LED that emits only primary colours (red, green, and blue). The experiment utilised an Arduino microcontroller board in conjunction with RGB LEDs and an LCD display. The activity was conducted with 53 7th-grade students from a private school in Portugal results suggest a positive reception, indicating success in both motivational and cognitive aspects. The overall outcomes underscore the effectiveness of the activity in imparting new knowledge to students.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad3c89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Teaching the colour of stars is not as trivial as one might think. It can be challenging for students to grasp that the colour of stars follows a temperature sequence. This paper introduces a simple experimental setup for instructing the correlation between a star’s colour and its temperature. Furthermore, the experimental setup facilitates the exploration of the topic of colour addition, demonstrating to students how to replicate the colour of a star—a spectrum colour—by employing an RGB LED that emits only primary colours (red, green, and blue). The experiment utilised an Arduino microcontroller board in conjunction with RGB LEDs and an LCD display. The activity was conducted with 53 7th-grade students from a private school in Portugal results suggest a positive reception, indicating success in both motivational and cognitive aspects. The overall outcomes underscore the effectiveness of the activity in imparting new knowledge to students.
期刊介绍:
Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.