{"title":"Phenyltrimethylammonium as an Interlayer Spacer for Stable Formamidinium-Based Quasi-2D Perovskite Solar Cells","authors":"Bumjin Gil, Jinhyun Kim, Byungwoo Park","doi":"10.1007/s13391-024-00497-w","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-2D perovskite materials possess great potential in improving the stability of perovskite solar cells due to their superior chemical and structural stableness compared to 3D counterparts. Here, commonly-used 3D formamidinum lead iodide (FAPbI<sub>3</sub>) perovskite is alloyed by addition of quaternary cation phenyltrimethylammonium (PTMA) up to 33% (<i>n</i> = 5), which forms quasi-2D perovskite phase that acts beneficial to charge transport and stability. Since the detailed structural analyses regarding this quaternary ammonium salt is still lacking, we attempt to provide how the presence of 2D perovskite affects the crystal structure based on x-ray diffraction techniques. It is shown that PTMA cations directs FAPbI<sub>3</sub> to have textured orientation and reduced strains. This led to enhanced extraction of photogenerated carriers and reduced defects, making it promising material for solar cell applications. The champion device remains stable under 60 °C or 1 sun for 700 h, demonstrating its potential for optoelectronic devices requiring long-term stability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"791 - 798"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00497-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-2D perovskite materials possess great potential in improving the stability of perovskite solar cells due to their superior chemical and structural stableness compared to 3D counterparts. Here, commonly-used 3D formamidinum lead iodide (FAPbI3) perovskite is alloyed by addition of quaternary cation phenyltrimethylammonium (PTMA) up to 33% (n = 5), which forms quasi-2D perovskite phase that acts beneficial to charge transport and stability. Since the detailed structural analyses regarding this quaternary ammonium salt is still lacking, we attempt to provide how the presence of 2D perovskite affects the crystal structure based on x-ray diffraction techniques. It is shown that PTMA cations directs FAPbI3 to have textured orientation and reduced strains. This led to enhanced extraction of photogenerated carriers and reduced defects, making it promising material for solar cell applications. The champion device remains stable under 60 °C or 1 sun for 700 h, demonstrating its potential for optoelectronic devices requiring long-term stability.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.