Another Look at Side-Channel-Resistant Encoding Schemes

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Very Large Scale Integration (VLSI) Systems Pub Date : 2024-04-26 DOI:10.1109/TVLSI.2024.3390614
Xiaolu Hou;Jakub Breier;Mladen Kovačević
{"title":"Another Look at Side-Channel-Resistant Encoding Schemes","authors":"Xiaolu Hou;Jakub Breier;Mladen Kovačević","doi":"10.1109/TVLSI.2024.3390614","DOIUrl":null,"url":null,"abstract":"The idea of balancing the side-channel leakage in software was proposed more than a decade ago. Just like with other hiding-based countermeasures, the goal is not to hide the leakage completely but to significantly increase the effort required for the attack. Previous approaches focused on two directions: either balancing the Hamming weight of the processed data or deriving the code by using stochastic leakage profiling. In this brief, we build upon these results by proposing a novel approach that combines the two directions. We provide the theory behind our encoding scheme backed by experimental results on a 32-bit ARM Cortex-M4 microcontroller. Our results show that such a combination gives better side-channel resistance properties than each of the two methods separately.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10508964/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The idea of balancing the side-channel leakage in software was proposed more than a decade ago. Just like with other hiding-based countermeasures, the goal is not to hide the leakage completely but to significantly increase the effort required for the attack. Previous approaches focused on two directions: either balancing the Hamming weight of the processed data or deriving the code by using stochastic leakage profiling. In this brief, we build upon these results by proposing a novel approach that combines the two directions. We provide the theory behind our encoding scheme backed by experimental results on a 32-bit ARM Cortex-M4 microcontroller. Our results show that such a combination gives better side-channel resistance properties than each of the two methods separately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗侧信道编码方案的另一种视角
平衡软件侧信道泄漏的想法早在十多年前就已提出。与其他基于隐藏的对策一样,其目标不是完全隐藏泄漏,而是显著增加攻击所需的工作量。以前的方法主要集中在两个方向:要么平衡处理数据的汉明权重,要么利用随机泄漏剖析推导代码。在本简介中,我们在这些成果的基础上提出了一种结合这两个方向的新方法。我们提供了编码方案背后的理论,并以 32 位 ARM Cortex-M4 微控制器上的实验结果为支撑。我们的结果表明,与这两种方法相比,这种组合具有更好的抗侧信道特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
期刊最新文献
Table of Contents IEEE Transactions on Very Large Scale Integration (VLSI) Systems Society Information IEEE Transactions on Very Large Scale Integration (VLSI) Systems Publication Information Table of Contents IEEE Transactions on Very Large Scale Integration (VLSI) Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1