GNSS Gravity Leveling

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS pure and applied geophysics Pub Date : 2024-04-26 DOI:10.1007/s00024-024-03492-2
Hurong Duan, Yerui Zhang, Lelin Xing, Weifeng Liang
{"title":"GNSS Gravity Leveling","authors":"Hurong Duan, Yerui Zhang, Lelin Xing, Weifeng Liang","doi":"10.1007/s00024-024-03492-2","DOIUrl":null,"url":null,"abstract":"<p>A new method of GNSS gravity leveling is introduced to determine precisely normal height differences, Both the principle and application of the method are elaborated. Leveling surveying, gravity measurements, and GNSS measurements are carried out in a special region (including slopes, valleys and mountain ridges) to verify its accuracy by combining with gravity potential model. The results show that the precision by this method is mainly influenced by ellipsoidal height differences, gravity potential models, and gravity observations. However, the error by this method exhibits a clear linear relationship with the height difference, while it is independent of the length of the survey line. Within a specific range of height differences (within 360 m), the precision of the GNSS gravity leveling can reach the level of ± 10 mm. This method can, to some extent, provides a modern solution for height measurement which can replace the high-precision leveling surveying. The advantages of GNSS gravity leveling include high precision and high efficiency. It has a promising application prospect in geodesy, hydraulic engineering, earthquake and volcano monitoring.</p>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"2015 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00024-024-03492-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new method of GNSS gravity leveling is introduced to determine precisely normal height differences, Both the principle and application of the method are elaborated. Leveling surveying, gravity measurements, and GNSS measurements are carried out in a special region (including slopes, valleys and mountain ridges) to verify its accuracy by combining with gravity potential model. The results show that the precision by this method is mainly influenced by ellipsoidal height differences, gravity potential models, and gravity observations. However, the error by this method exhibits a clear linear relationship with the height difference, while it is independent of the length of the survey line. Within a specific range of height differences (within 360 m), the precision of the GNSS gravity leveling can reach the level of ± 10 mm. This method can, to some extent, provides a modern solution for height measurement which can replace the high-precision leveling surveying. The advantages of GNSS gravity leveling include high precision and high efficiency. It has a promising application prospect in geodesy, hydraulic engineering, earthquake and volcano monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球导航卫星系统重力水平仪
介绍了一种精确测定正常高差的全球导航卫星系统重力水准测量新方法,并阐述了该方法的原理和应用。在一个特殊区域(包括斜坡、山谷和山脊)进行了水准测量、重力测量和全球导航卫星系统测量,通过与重力势能模型相结合来验证其精度。结果表明,该方法的精度主要受椭球高差、重力势能模型和重力观测数据的影响。不过,该方法的误差与高差呈明显的线性关系,而与测线长度无关。在特定的高度差范围内(360 米以内),全球导航卫星系统重力水准测量的精度可达 ± 10 毫米。这种方法在一定程度上为高程测量提供了一种现代化的解决方案,可以取代高精度水准测量。全球导航卫星系统重力水准测量的优点是精度高、效率高。它在大地测量、水利工程、地震和火山监测方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
期刊最新文献
Investigation of Kula Volcanic Field (Türkiye) Through the Inversion of Aeromagnetic Anomalies Using Success-History-Based Adaptive Differential Evolution with Exponential Population Reduction Strategy Reliability of Moment Tensor Inversion for Different Seismic Networks On the Monitoring of Small Islands Belonging to the Aeolian Archipelago by MT-InSAR Data Stochastic Approach to the Evolution of the Global Water Cycle: Results of Historical Experiments on the CMIP-6 Models Basin Style Variation Along a Transform Fault: Southern Colorado River Delta, Baja California, México
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1