V. V. Zuev, E. A. Maslennikova, E. S. Savelieva, A. V. Pavlinsky
{"title":"Sensitivity of the Antarctic Polar Vortex to Temperature Changes in the Lower Subtropical Stratosphere","authors":"V. V. Zuev, E. A. Maslennikova, E. S. Savelieva, A. V. Pavlinsky","doi":"10.1134/S1024856023700124","DOIUrl":null,"url":null,"abstract":"<p>Polar vortices play a significant role in the distribution of stratospheric ozone, the movement of air masses in the polar and subpolar stratosphere, and temperature changes over the polar region. An Antarctic polar vortex forms in autumn and reaches its peak intensity in early spring. In late spring, when this vortex weakens, the influence of the lower subtropical stratosphere on it increases. We consider the effect of temperature changes in the lower subtropical stratosphere on the Antarctic polar vortex strengthening. Using correlation analysis and ARA5 reanalysis data, we show a significant increase in the effect of minor temperature changes in the lower subtropical stratosphere on the dynamics of an Antarctic polar vortex in the second half of November.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856023700124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polar vortices play a significant role in the distribution of stratospheric ozone, the movement of air masses in the polar and subpolar stratosphere, and temperature changes over the polar region. An Antarctic polar vortex forms in autumn and reaches its peak intensity in early spring. In late spring, when this vortex weakens, the influence of the lower subtropical stratosphere on it increases. We consider the effect of temperature changes in the lower subtropical stratosphere on the Antarctic polar vortex strengthening. Using correlation analysis and ARA5 reanalysis data, we show a significant increase in the effect of minor temperature changes in the lower subtropical stratosphere on the dynamics of an Antarctic polar vortex in the second half of November.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.