Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-12-19 DOI:10.1134/S1024856024700982
S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, S. N. Murashko
{"title":"Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol","authors":"S. M. Bobrovnikov,&nbsp;E. V. Gorlov,&nbsp;V. I. Zharkov,&nbsp;S. N. Murashko","doi":"10.1134/S1024856024700982","DOIUrl":null,"url":null,"abstract":"<p>The laser fragmentation/laser-induced fluorescence (LF/LIF) method is well known for its efficiency in detecting complex chemical compounds based on the fluorescence of their characteristic fragments. The method is applied, for example, to measuring the local content of nitrous acid and hydroxyl radicals in the atmosphere, visualization of intermediate stages of combustion processes, remote detection of substances in the gaseous state in the atmosphere and condensed state on surfaces, etc. We present for the first time the results of the experimental study of a possibility of remote excitation of LIF of characteristic photofragments of a substance in an aerosol state in the atmosphere. The organophosphorus compound triethyl phosphate (TEP) was used as the test substance. It has been shown that synchronized two-pulse laser irradiation of TEP aerosol particles and their PO-fragments (phosphorus oxide molecules) makes it possible to increase the efficiency of the LF/LIF process by approximately seven times compared to single-pulse laser exposure. It has been established that formation of PO-fragments of TEP aerosol under the laser irradiation at a wavelength of 266 nm has a decaying exponential character with a characteristic time of 192.6 ± 20.2 ns. In terms of the nature of the time dependence of the formation of photofragments, the results obtained are fundamentally different from similar measurements for other compounds in gaseous and condensed states and motivate further research that will contribute to the development of the LF/LIF method.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"732 - 737"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The laser fragmentation/laser-induced fluorescence (LF/LIF) method is well known for its efficiency in detecting complex chemical compounds based on the fluorescence of their characteristic fragments. The method is applied, for example, to measuring the local content of nitrous acid and hydroxyl radicals in the atmosphere, visualization of intermediate stages of combustion processes, remote detection of substances in the gaseous state in the atmosphere and condensed state on surfaces, etc. We present for the first time the results of the experimental study of a possibility of remote excitation of LIF of characteristic photofragments of a substance in an aerosol state in the atmosphere. The organophosphorus compound triethyl phosphate (TEP) was used as the test substance. It has been shown that synchronized two-pulse laser irradiation of TEP aerosol particles and their PO-fragments (phosphorus oxide molecules) makes it possible to increase the efficiency of the LF/LIF process by approximately seven times compared to single-pulse laser exposure. It has been established that formation of PO-fragments of TEP aerosol under the laser irradiation at a wavelength of 266 nm has a decaying exponential character with a characteristic time of 192.6 ± 20.2 ns. In terms of the nature of the time dependence of the formation of photofragments, the results obtained are fundamentally different from similar measurements for other compounds in gaseous and condensed states and motivate further research that will contribute to the development of the LF/LIF method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机磷酸盐气溶胶的双脉冲激光碎裂/激光诱导荧光研究
众所周知,激光碎裂/激光诱导荧光(LF/LIF)方法可根据化合物特征碎片的荧光有效检测复杂的化合物。例如,该方法可用于测量大气中当地的亚硝酸和羟基自由基含量、可视化燃烧过程的中间阶段、远程检测大气中的气态物质和表面上的凝结态物质等。我们首次介绍了对大气中气溶胶状态物质的特征光碎片 LIF 进行远程激发的可能性的实验研究结果。试验物质是有机磷化合物磷酸三乙酯(TEP)。研究表明,对 TEP 气溶胶粒子及其 PO 碎片(氧化磷分子)进行同步双脉冲激光照射,可使 LF/LIF 过程的效率比单脉冲激光照射提高约七倍。已经证实,在波长为 266 nm 的激光照射下,TEP 气溶胶 PO 碎片的形成具有指数衰减的特征,其特征时间为 192.6 ± 20.2 ns。从光碎片形成的时间依赖性来看,所获得的结果与对其他气态和凝聚态化合物的类似测量结果有着本质区别,这也促使我们进一步开展研究,为 LF/LIF 方法的发展做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
Determination of Atmospheric Turbulence Type from Operational Meteorological Measurements Vibrational Energy Levels for Sulfur Dioxide Isotopologues Activity of High Cyclones above Erebus Volcano According to ERA5 Reanalysis Data Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol Study of the Wildfire Effect on Local Atmospheric Parameters using Remote Sensing Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1