OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation

Weicong Tan, Weiqing Wang, Xin Zhou, Wray Buntine, Gordon Bingham, Hongzhi Yin
{"title":"OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation","authors":"Weicong Tan, Weiqing Wang, Xin Zhou, Wray Buntine, Gordon Bingham, Hongzhi Yin","doi":"10.1007/s11280-024-01268-1","DOIUrl":null,"url":null,"abstract":"<p>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose <b>OntoMedRec</b>, the <i>logically-pretrained</i> and <i>model-agnostic</i> medical <b>Onto</b>logy Encoders for <b>Med</b>ication <b>Rec</b>ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. (https://github.com/WaicongTam/OntoMedRec)</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01268-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose OntoMedRec, the logically-pretrained and model-agnostic medical Ontology Encoders for Medication Recommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. (https://github.com/WaicongTam/OntoMedRec)

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OntoMedRec:用于药物推荐的逻辑训练型本体编码器
对于数据驱动的临床决策支持系统来说,利用电子健康记录(EHR)推荐药物是一项具有挑战性的任务。大多数现有模型都基于电子健康记录学习医疗概念的表征,并利用学习到的表征进行推荐。然而,大多数药物在电子病历数据集中出现的时间有限(药物的频率分布遵循幂律分布),导致对药物表征的学习不足。医学本体是医学术语的分层分类系统,相似的术语在一定层次上属于同一类别。在本文中,我们提出了用于用药推荐的经过逻辑预训练和模型无关的医学本体编码器 OntoMedRec,以解决医学本体的数据稀疏性问题。我们在真实世界的电子病历数据集上进行了综合实验,通过将 OntoMedRec 集成到现有的各种下游用药推荐模型中来评估其有效性。结果表明,OntoMedRec 的集成提高了各种模型在整个 EHR 数据集和少量药物入院中的性能。我们提供了源代码的 GitHub 代码库。(https://github.com/WaicongTam/OntoMedRec)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networks A SHAP-based controversy analysis through communities on Twitter pFind: Privacy-preserving lost object finding in vehicular crowdsensing Use of prompt-based learning for code-mixed and code-switched text classification Drug traceability system based on semantic blockchain and on a reputation method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1