Matthew J. Burfeindt;Hatim F. Alqadah;Scott Ziegler
{"title":"Experimental Phase-Encoded Linear Sampling Method Imaging With a Single Transmitter and Receiver","authors":"Matthew J. Burfeindt;Hatim F. Alqadah;Scott Ziegler","doi":"10.1109/OJAP.2024.3393717","DOIUrl":null,"url":null,"abstract":"The phase-encoded linear sampling method (PE-LSM) is an inverse scattering technique for reconstructing the shape of a conducting target from scattered electric fields. It is a variant of the well-known linear sampling method (LSM), which solves the nonlinear shape reconstruction problem using linear optimization. The PE-LSM mitigates the primary obstacle to practical imaging via LSM-based processing – its need for copious multistatic-multiview transmit-receive channels. In this study, we evaluate the PE-LSM using experimental data. We collect synthetic aperture data in an anechoic chamber using only a single transmit-receive channel. With the aid of a monostatic-to-multistatic transform, we generate reconstructions of each target via the PE-LSM. The results evince significant improvements in fidelity to the true target geometries compared to imagery generated by both conventional LSM processing and a conventional backprojection-based radar approach.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 4","pages":"942-957"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508577/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The phase-encoded linear sampling method (PE-LSM) is an inverse scattering technique for reconstructing the shape of a conducting target from scattered electric fields. It is a variant of the well-known linear sampling method (LSM), which solves the nonlinear shape reconstruction problem using linear optimization. The PE-LSM mitigates the primary obstacle to practical imaging via LSM-based processing – its need for copious multistatic-multiview transmit-receive channels. In this study, we evaluate the PE-LSM using experimental data. We collect synthetic aperture data in an anechoic chamber using only a single transmit-receive channel. With the aid of a monostatic-to-multistatic transform, we generate reconstructions of each target via the PE-LSM. The results evince significant improvements in fidelity to the true target geometries compared to imagery generated by both conventional LSM processing and a conventional backprojection-based radar approach.