Sayed Jalal Moosavi, Katharina Birgit Budde, Marco Heurich, Markus Mueller, Oliver Gailing
{"title":"Genetic variation of English yew (Taxus baccata L.) in the Bavarian Forest National Park, Germany","authors":"Sayed Jalal Moosavi, Katharina Birgit Budde, Marco Heurich, Markus Mueller, Oliver Gailing","doi":"10.1007/s10342-024-01687-9","DOIUrl":null,"url":null,"abstract":"<p><i>Taxus baccata</i> L. is a highly valuable species with wide distribution but scattered and locally rare occurrence. Human intervention, including forest management practices and fragmentation, can significantly impact the species’ genetic diversity, structure, and dynamics. In this study, we investigated these factors within <i>T. baccata</i> populations in the Bavarian Forest National Park (NP) in Germany and their implications for conservation. We used 13 EST-SSRs to assess the genetic diversity and structure of the population. Our analysis revealed a scarcity of small-diameter trees, indicating limited natural regeneration over time. However, conservation efforts, like selectively removing competitor species and using protective fencing, have improved growth conditions and promoted seedling emergence. The NP’s natural zone has no active management, which is confined to the development and management zones. Genetic diversity assessments revealed high genetic diversity (<i>H</i><sub>e</sub>: 0.612 and 0.614 for seedlings and adults, respectively) compared to other studies in <i>Taxus baccata</i>, dispelling concerns of significant inbreeding and showcasing a stable genetic structure. However, significant spatial clustering of related individuals (family structures) in both cohorts and low effective population size in the progeny hints at restricted gene flow, necessitating conservation efforts prioritizing safeguarding and promoting natural regeneration in development and management zones. Limited natural regeneration and the recent decrease in effective population size in the NP populations indicate habitat fragmentation and human interventions. Effective population size estimates emphasize the need for diverse conservation strategies. Conservation efforts should prioritize protecting natural regeneration and enhancing gene flow by actively promoting European yew, e.g., by shelterwood cutting, to ensure the long-term viability of <i>T. baccata</i> in the region outside the NP.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"155 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01687-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Taxus baccata L. is a highly valuable species with wide distribution but scattered and locally rare occurrence. Human intervention, including forest management practices and fragmentation, can significantly impact the species’ genetic diversity, structure, and dynamics. In this study, we investigated these factors within T. baccata populations in the Bavarian Forest National Park (NP) in Germany and their implications for conservation. We used 13 EST-SSRs to assess the genetic diversity and structure of the population. Our analysis revealed a scarcity of small-diameter trees, indicating limited natural regeneration over time. However, conservation efforts, like selectively removing competitor species and using protective fencing, have improved growth conditions and promoted seedling emergence. The NP’s natural zone has no active management, which is confined to the development and management zones. Genetic diversity assessments revealed high genetic diversity (He: 0.612 and 0.614 for seedlings and adults, respectively) compared to other studies in Taxus baccata, dispelling concerns of significant inbreeding and showcasing a stable genetic structure. However, significant spatial clustering of related individuals (family structures) in both cohorts and low effective population size in the progeny hints at restricted gene flow, necessitating conservation efforts prioritizing safeguarding and promoting natural regeneration in development and management zones. Limited natural regeneration and the recent decrease in effective population size in the NP populations indicate habitat fragmentation and human interventions. Effective population size estimates emphasize the need for diverse conservation strategies. Conservation efforts should prioritize protecting natural regeneration and enhancing gene flow by actively promoting European yew, e.g., by shelterwood cutting, to ensure the long-term viability of T. baccata in the region outside the NP.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.