{"title":"Removal performance of leonardite toward volatile organic compounds and toxic metals from landfill leachates","authors":"Ayhan Kocaman, Metin Turan, Amir Hossein Vakili, Burak Feyyaz Savas, Özlem Ete Aydemir, Avni Çakici","doi":"10.1002/clen.202300188","DOIUrl":null,"url":null,"abstract":"<p>Leachate from municipal waste contains volatile organic compounds and potentially toxic metals. The leaching of which into water sources also jeopardizes access to clean water. Therefore, reducing the concentration of pollutants in leachate is important to reduce health risks and environmental pollution. In this study, the efficacy of granulated organic leonardite added to leachate from municipal waste in reducing the toxic concentrations of the leachate for different time points (30, 60, 90, and 120 min) at a shaking speed of 200 rpm was investigated. Results demonstrated that leonardite significantly removed various contaminants, including organic acids (71.16%), alcohols (74.31%), aldehydes (68.01%), esters (78.28%), ethers (81.03%), ketones (68.52%), hydrocarbons (84.25%), N compounds (78.56%), S compounds (80.67%), organic N (86.01%), total Kjeldahl nitrogen (93.26%), NH<sub>4</sub>-N (84.83%), NO<sub>3</sub>-N (89.30%), SO<sub>4</sub> (76.62%), PO<sub>4</sub> (73.85%), organic C (50.07%), Hg (96.80%), Pb (95.99%), Cu (82.68%), Al (65.56%), total Cr (98.11%), Cd (99.28%), Li (96.31%), Ni (97.27%), and As (67.79%). The leonardite granules used in this study showed high adsorption and removal performance for organic/inorganic and volatile compounds in landfill leachate. These results indicate that leonardite can be a suitable adsorption material for leachate pretreatment. However, it is necessary to perform a durability test to use the material in the long term as a covering on landfills.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300188","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Leachate from municipal waste contains volatile organic compounds and potentially toxic metals. The leaching of which into water sources also jeopardizes access to clean water. Therefore, reducing the concentration of pollutants in leachate is important to reduce health risks and environmental pollution. In this study, the efficacy of granulated organic leonardite added to leachate from municipal waste in reducing the toxic concentrations of the leachate for different time points (30, 60, 90, and 120 min) at a shaking speed of 200 rpm was investigated. Results demonstrated that leonardite significantly removed various contaminants, including organic acids (71.16%), alcohols (74.31%), aldehydes (68.01%), esters (78.28%), ethers (81.03%), ketones (68.52%), hydrocarbons (84.25%), N compounds (78.56%), S compounds (80.67%), organic N (86.01%), total Kjeldahl nitrogen (93.26%), NH4-N (84.83%), NO3-N (89.30%), SO4 (76.62%), PO4 (73.85%), organic C (50.07%), Hg (96.80%), Pb (95.99%), Cu (82.68%), Al (65.56%), total Cr (98.11%), Cd (99.28%), Li (96.31%), Ni (97.27%), and As (67.79%). The leonardite granules used in this study showed high adsorption and removal performance for organic/inorganic and volatile compounds in landfill leachate. These results indicate that leonardite can be a suitable adsorption material for leachate pretreatment. However, it is necessary to perform a durability test to use the material in the long term as a covering on landfills.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.