{"title":"Evaluation of Heat losses in a non-concentrated solar thermoelectric generator with spectrally selective absorbers","authors":"Jinglong WANG, Lin Lu","doi":"10.1615/heattransres.2024052326","DOIUrl":null,"url":null,"abstract":"Solar thermoelectric generator (STEG) has been widely studied in optical and thermal concentrating fields, and the spectral properties are mainly focused on the solar spectrum. However, limited attention has been paid to STEG without any concentrators and in the full spectral range. Therefore, in this work, a thermal-electrical coupled mathematical model for STEG systems is developed according to thermal resistance networks to investigate heat losses above the absorber and power generation performance. For the ideal selective absorber and emitter system, the main heat losses from the absorber occur due to radiative cooling to the sky as well as for the ideal broadband absorber system, as opposed to convection and ambient radiative losses. These sky radiative cooling losses account for approximately 83.8% and 73.7% of the total heat losses, respectively. The total water vapor has the greatest impact on radiative cooling power compared to other forms of heat loss, while wind speed has the largest effect on convective heat loss. Elevated ambient temperatures result in decreased heat loss across all forms. An increase in bottom surface temperature or solar irradiance results in an increase in various forms of heat loss. In light of its cost-effectiveness and environmentally-friendly characteristics, this paper offers recommendations on enhancing the system design of STEG aiming to minimize heat loss, enhance system performance, and pave the way for a promising future in various applications.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":"55 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024052326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar thermoelectric generator (STEG) has been widely studied in optical and thermal concentrating fields, and the spectral properties are mainly focused on the solar spectrum. However, limited attention has been paid to STEG without any concentrators and in the full spectral range. Therefore, in this work, a thermal-electrical coupled mathematical model for STEG systems is developed according to thermal resistance networks to investigate heat losses above the absorber and power generation performance. For the ideal selective absorber and emitter system, the main heat losses from the absorber occur due to radiative cooling to the sky as well as for the ideal broadband absorber system, as opposed to convection and ambient radiative losses. These sky radiative cooling losses account for approximately 83.8% and 73.7% of the total heat losses, respectively. The total water vapor has the greatest impact on radiative cooling power compared to other forms of heat loss, while wind speed has the largest effect on convective heat loss. Elevated ambient temperatures result in decreased heat loss across all forms. An increase in bottom surface temperature or solar irradiance results in an increase in various forms of heat loss. In light of its cost-effectiveness and environmentally-friendly characteristics, this paper offers recommendations on enhancing the system design of STEG aiming to minimize heat loss, enhance system performance, and pave the way for a promising future in various applications.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.