Silicone Rubber Treatment with a Sodium Chloride Solution in the Presence of an Electric Field

K. D. Poluektova, S. A. Vasilkov, A. V. Slesarenko
{"title":"Silicone Rubber Treatment with a Sodium Chloride Solution in the Presence of an Electric Field","authors":"K. D. Poluektova,&nbsp;S. A. Vasilkov,&nbsp;A. V. Slesarenko","doi":"10.3103/S1068375524020091","DOIUrl":null,"url":null,"abstract":"<p>High voltage silicone insulators that are placed close to coastal marine areas have the problem of salt fog depositing on their surfaces in the form of conductive droplets. Under the influence of an electric field, those droplets initiate partial discharges, which leads to the degradation of the hydrophobic properties of silicone rubber. This phenomenon, in which droplets serve as the cause of partial discharges, has been studied in considerable detail elsewhere. However, it remains unclear whether the droplets themselves, as moisture-laden areas, affect the properties of silicone rubber. The current work is focused on studying the combined effect of an AC electric field (<i>E</i> = 17 kV/cm) and a 4% solution of sodium chloride on the water-repellent properties of silicone rubber in the absence of electrical discharges. The results of the study show that the influence of moisture and an electric field leads to slowing down the droplet runoff from the inclined sample of Powersil 310 rubber. An AC electric field did not have a noticeable effect on the rate of water runoff; the slowdown was due to the pre-treatment of the sample with the solution.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"260 - 267"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524020091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

High voltage silicone insulators that are placed close to coastal marine areas have the problem of salt fog depositing on their surfaces in the form of conductive droplets. Under the influence of an electric field, those droplets initiate partial discharges, which leads to the degradation of the hydrophobic properties of silicone rubber. This phenomenon, in which droplets serve as the cause of partial discharges, has been studied in considerable detail elsewhere. However, it remains unclear whether the droplets themselves, as moisture-laden areas, affect the properties of silicone rubber. The current work is focused on studying the combined effect of an AC electric field (E = 17 kV/cm) and a 4% solution of sodium chloride on the water-repellent properties of silicone rubber in the absence of electrical discharges. The results of the study show that the influence of moisture and an electric field leads to slowing down the droplet runoff from the inclined sample of Powersil 310 rubber. An AC electric field did not have a noticeable effect on the rate of water runoff; the slowdown was due to the pre-treatment of the sample with the solution.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电场作用下用氯化钠溶液处理硅橡胶
摘要 高压硅胶绝缘子如果放置在靠近沿海海域的地方,就会出现盐雾以导电液滴的形式沉积在其表面的问题。在电场的影响下,这些液滴会引发局部放电,从而导致硅橡胶的疏水特性退化。液滴是导致局部放电的原因,这一现象已在其他地方进行了相当详细的研究。然而,液滴本身作为含水区域,是否会影响硅橡胶的性能仍不清楚。目前的工作重点是研究交流电场(E = 17 kV/cm)和 4% 的氯化钠溶液在不放电的情况下对硅橡胶憎水性的综合影响。研究结果表明,湿气和电场的影响导致 Powersil 310 橡胶倾斜样品的水滴流速减慢。交流电场对水流速度的影响并不明显;水流速度减慢是由于用溶液对样品进行了预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Calculation of the Main Averaged Characteristics of the Drift of Lone Electrons in a Metal Conductor with a Conduction Current Autonomous Devices with an Evaporation–Condensation Cycle for Thermal Control of Heat-Loaded Equipment Experimental Method and Software Instruments for Sliding Tribosystem Dynamic Behavior Research Investigating Ultrasonically Assisted CdxCryFe3 – (x + y)O4 for Its Electrochemical Efficacy towards Water Electrolysis, Ethanol and Methanol Oxidation The Effect of Preparation Conditions on the Characteristics of Anodized Copper Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1