Evolutionary Causal Discovery with Relative Impact Stratification for Interpretable Data Analysis

Ou Deng, Shoji Nishimura, Atsushi Ogihara, Qun Jin
{"title":"Evolutionary Causal Discovery with Relative Impact Stratification for Interpretable Data Analysis","authors":"Ou Deng, Shoji Nishimura, Atsushi Ogihara, Qun Jin","doi":"arxiv-2404.16361","DOIUrl":null,"url":null,"abstract":"This study proposes Evolutionary Causal Discovery (ECD) for causal discovery\nthat tailors response variables, predictor variables, and corresponding\noperators to research datasets. Utilizing genetic programming for variable\nrelationship parsing, the method proceeds with the Relative Impact\nStratification (RIS) algorithm to assess the relative impact of predictor\nvariables on the response variable, facilitating expression simplification and\nenhancing the interpretability of variable relationships. ECD proposes an\nexpression tree to visualize the RIS results, offering a differentiated\ndepiction of unknown causal relationships compared to conventional causal\ndiscovery. The ECD method represents an evolution and augmentation of existing\ncausal discovery methods, providing an interpretable approach for analyzing\nvariable relationships in complex systems, particularly in healthcare settings\nwith Electronic Health Record (EHR) data. Experiments on both synthetic and\nreal-world EHR datasets demonstrate the efficacy of ECD in uncovering patterns\nand mechanisms among variables, maintaining high accuracy and stability across\ndifferent noise levels. On the real-world EHR dataset, ECD reveals the\nintricate relationships between the response variable and other predictive\nvariables, aligning with the results of structural equation modeling and\nshapley additive explanations analyses.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes Evolutionary Causal Discovery (ECD) for causal discovery that tailors response variables, predictor variables, and corresponding operators to research datasets. Utilizing genetic programming for variable relationship parsing, the method proceeds with the Relative Impact Stratification (RIS) algorithm to assess the relative impact of predictor variables on the response variable, facilitating expression simplification and enhancing the interpretability of variable relationships. ECD proposes an expression tree to visualize the RIS results, offering a differentiated depiction of unknown causal relationships compared to conventional causal discovery. The ECD method represents an evolution and augmentation of existing causal discovery methods, providing an interpretable approach for analyzing variable relationships in complex systems, particularly in healthcare settings with Electronic Health Record (EHR) data. Experiments on both synthetic and real-world EHR datasets demonstrate the efficacy of ECD in uncovering patterns and mechanisms among variables, maintaining high accuracy and stability across different noise levels. On the real-world EHR dataset, ECD reveals the intricate relationships between the response variable and other predictive variables, aligning with the results of structural equation modeling and shapley additive explanations analyses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相对影响分层发现进化因果,实现可解释的数据分析
本研究提出了用于因果发现的进化因果发现(ECD)方法,该方法可根据研究数据集定制响应变量、预测变量和相应的操作者。该方法利用遗传编程进行变量关系解析,然后使用相对影响分层(RIS)算法评估预测变量对响应变量的相对影响,从而简化表达式并提高变量关系的可解释性。ECD 提出了一种表达树来直观显示 RIS 结果,与传统的因果发现相比,它提供了对未知因果关系的差异化描述。ECD 方法是对现有因果发现方法的演进和增强,为分析复杂系统中的变量关系提供了一种可解释的方法,特别是在医疗保健领域的电子健康记录(EHR)数据中。在合成和现实世界的电子病历数据集上进行的实验证明了 ECD 在揭示变量之间的模式和机制方面的功效,并在不同噪声水平下保持了较高的准确性和稳定性。在现实世界的电子病历数据集上,ECD 揭示了响应变量与其他预测变量之间错综复杂的关系,与结构方程建模和沙普利加法解释分析的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1