Production, purification, and determination of the biochemical properties of β-glucosidase in Trichoderma koningii via solid substrate fermentation

Selma Çelen Yücetürk, Ayşe Dilek Azaz
{"title":"Production, purification, and determination of the biochemical properties of β-glucosidase in Trichoderma koningii via solid substrate fermentation","authors":"Selma Çelen Yücetürk, Ayşe Dilek Azaz","doi":"10.1515/znc-2024-0026","DOIUrl":null,"url":null,"abstract":"The β-glucosidase enzyme was obtained from <jats:italic>Trichoderma koningii</jats:italic> Oudem. NRRL 54330 under optimal conditions by solid substrate fermentation (SSF) using corn cobs as substrate. The enzyme was purified by two-step procedures, ammonium sulphate precipitation and cefarose-4B-<jats:sc>l</jats:sc>-tyrosine-1-naphthylamine hydrophobic interaction chromatography, followed by biochemical and kinetic characterisation. The β-glucosidase was obtained from <jats:italic>T. koningii</jats:italic> using ground corn cob as substrate and Na<jats:sub>2</jats:sub>HPO<jats:sub>4</jats:sub>, pH 9, as humidification medium. The optimum conditions for enzyme production by SSF were 30 °C and 6 days. The purification efficiency of the obtained β-glucosidase was calculated to be 22.56-fold with a yield of 73.51 %. In the determination of β-glucosidase activity, <jats:italic>p</jats:italic>-nitrophenyl-β-<jats:sc>d</jats:sc>-glucopyranoside (<jats:italic>p</jats:italic>NPG) substrate was used, and the optimum pH and temperature values at which β-glucosidase showed high activity were determined to be pH 3.0 and 75 °C. The purity of the enzyme and the presence/number of subunits were checked using two different electrophoretic methods, SDS-PAGE and NATIVE-PAGE electrophoretic methods. The <jats:italic>K</jats:italic> <jats:sub>m</jats:sub> and <jats:italic>V</jats:italic> <jats:sub>max</jats:sub> values of the purified enzyme were determined to be 0.16 mM and 2000 EU respectively. It was also found that <jats:sc>d</jats:sc>-(+)-glucose and δ-gluconolactone inhibitors exhibited competitive inhibition of β-glucosidase in the presence of <jats:italic>p</jats:italic>NPG.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2024-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The β-glucosidase enzyme was obtained from Trichoderma koningii Oudem. NRRL 54330 under optimal conditions by solid substrate fermentation (SSF) using corn cobs as substrate. The enzyme was purified by two-step procedures, ammonium sulphate precipitation and cefarose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography, followed by biochemical and kinetic characterisation. The β-glucosidase was obtained from T. koningii using ground corn cob as substrate and Na2HPO4, pH 9, as humidification medium. The optimum conditions for enzyme production by SSF were 30 °C and 6 days. The purification efficiency of the obtained β-glucosidase was calculated to be 22.56-fold with a yield of 73.51 %. In the determination of β-glucosidase activity, p-nitrophenyl-β-d-glucopyranoside (pNPG) substrate was used, and the optimum pH and temperature values at which β-glucosidase showed high activity were determined to be pH 3.0 and 75 °C. The purity of the enzyme and the presence/number of subunits were checked using two different electrophoretic methods, SDS-PAGE and NATIVE-PAGE electrophoretic methods. The K m and V max values of the purified enzyme were determined to be 0.16 mM and 2000 EU respectively. It was also found that d-(+)-glucose and δ-gluconolactone inhibitors exhibited competitive inhibition of β-glucosidase in the presence of pNPG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过固体底物发酵法生产、纯化和测定科宁毛霉中的β-葡萄糖苷酶的生化特性
β-葡萄糖苷酶是以玉米芯为底物,在最佳条件下通过固体底物发酵(SSF)从 Trichoderma koningii Oudem.NRRL 54330 中获得。该酶通过硫酸铵沉淀和头孢糖-4B-l-酪氨酸-1-萘胺疏水相互作用色谱两步法纯化,然后进行生化和动力学表征。以磨碎的玉米芯为底物,以 pH 值为 9 的 Na2HPO4 为加湿介质,从 T. koningii 中获得了 β-葡萄糖苷酶。SSF 产酶的最佳条件是 30 °C 和 6 天。经计算,所获得的 β-葡萄糖苷酶的纯化效率为 22.56 倍,产率为 73.51%。在测定β-葡萄糖苷酶活性时,使用了对硝基苯基-β-d-吡喃葡萄糖苷(pNPG)底物,并确定了β-葡萄糖苷酶显示高活性的最佳 pH 值和温度值为 pH 3.0 和 75 ℃。使用两种不同的电泳方法(SDS-PAGE 和 NATIVE-PAGE 电泳方法)检测了酶的纯度和亚基的存在/数量。经测定,纯化酶的 K m 和 V max 值分别为 0.16 mM 和 2000 EU。研究还发现,在 pNPG 的存在下,d-(+)-葡萄糖和 δ-葡萄糖酸内酯抑制剂对 β-葡萄糖苷酶有竞争性抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hepatoprotective activity of medicinal plants, their phytochemistry, and safety concerns: a systematic review Insecticidal effect of new synthesized chalcone derivatives on Caribbean fruit fly, Anastrepha suspensa Comparative analysis among the degradation potential of enzymes obtained from Escherichia coli against the toxicity of sulfur dyes through molecular docking Production, purification, and determination of the biochemical properties of β-glucosidase in Trichoderma koningii via solid substrate fermentation Investigating the anti-cancer compounds from Calliandra harrisii for precision medicine in pancreatic cancer via in-silico drug design and GC-MS analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1