Gabriel André Tochetto , Vilson Conrado da Luz , Adriana Dervanoski , Gean Delise Leal Pasquali
{"title":"Hexavalent chromium removal by electrocoagulation using iron scrap electrodes: Optimization and kinetic modeling","authors":"Gabriel André Tochetto , Vilson Conrado da Luz , Adriana Dervanoski , Gean Delise Leal Pasquali","doi":"10.1016/j.cdc.2024.101138","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocoagulation is an advanced process that ensures efficiency in treating effluents containing heavy metals. The cost minimization through the reuse of scrap metal as electrodes gains prominence due to its high efficiency. This study aimed to evaluate and establish an optimized system for Cr(VI) electrocoagulation using scrap iron electrodes. The optimized system was derived through a series of experimental designs such as Plackett–Burman and Central Composite Rotatable Design, considering variables such as pH, Cr(VI) concentration, system temperature, agitation, applied electrical current, and reaction time. The results demonstrated that an efficient and optimized system for Cr(VI) removal through electrocoagulation using scrap iron electrodes, achieved for a 1 L volume, involves the use of: a current of 0.7 A, pH 1.5, 0.75 mg L<sup>−1</sup> of NaCl, and a time range of 30–45 min for concentrations ranging from 80 to 150 mg L<sup>−1</sup>.</p></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"51 ","pages":"Article 101138"},"PeriodicalIF":2.2180,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Data Collections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405830024000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocoagulation is an advanced process that ensures efficiency in treating effluents containing heavy metals. The cost minimization through the reuse of scrap metal as electrodes gains prominence due to its high efficiency. This study aimed to evaluate and establish an optimized system for Cr(VI) electrocoagulation using scrap iron electrodes. The optimized system was derived through a series of experimental designs such as Plackett–Burman and Central Composite Rotatable Design, considering variables such as pH, Cr(VI) concentration, system temperature, agitation, applied electrical current, and reaction time. The results demonstrated that an efficient and optimized system for Cr(VI) removal through electrocoagulation using scrap iron electrodes, achieved for a 1 L volume, involves the use of: a current of 0.7 A, pH 1.5, 0.75 mg L−1 of NaCl, and a time range of 30–45 min for concentrations ranging from 80 to 150 mg L−1.
期刊介绍:
Chemical Data Collections (CDC) provides a publication outlet for the increasing need to make research material and data easy to share and re-use. Publication of research data with CDC will allow scientists to: -Make their data easy to find and access -Benefit from the fast publication process -Contribute to proper data citation and attribution -Publish their intermediate and null/negative results -Receive recognition for the work that does not fit traditional article format. The research data will be published as ''data articles'' that support fast and easy submission and quick peer-review processes. Data articles introduced by CDC are short self-contained publications about research materials and data. They must provide the scientific context of the described work and contain the following elements: a title, list of authors (plus affiliations), abstract, keywords, graphical abstract, metadata table, main text and at least three references. The journal welcomes submissions focusing on (but not limited to) the following categories of research output: spectral data, syntheses, crystallographic data, computational simulations, molecular dynamics and models, physicochemical data, etc.