Fengxu Wang , Haodai Dong , Lei Yan , Wenfu Xu , Bin Liang
{"title":"Development of a linear decoupling cable-driven manipulator with independent driving joints,","authors":"Fengxu Wang , Haodai Dong , Lei Yan , Wenfu Xu , Bin Liang","doi":"10.1016/j.mechatronics.2024.103192","DOIUrl":null,"url":null,"abstract":"<div><p>A cable-driven manipulator demonstrates significant application in cramped environments, such as space maintenance and equipment monitoring, owing to its slender body and excellent flexibility. However, in traditional designs, the mapping between the operational space and the joint space is nonlinear and non-consistent, and the driving cables are also coupled. Consequently, the kinematics and dynamics become highly complex, posing challenges in enhancing efficiency and precision in trajectory planning and control. This paper introduces a novel linear decoupling cable-driven manipulator with independent driving joints. Two sets of nonlinear transmission mechanisms are designed and serially connected to form an equivalent linear transmission mechanism. This arrangement establishes a proportional relationship between the motor angle and joint angle, with the proportionality coefficient representing the equivalent transmission ratio. Moreover, a two-way wire-pulling mechanism is designed to achieve one-to-one driving between the motor and the joint. The nonlinear coupling problem between driving cables is solved by connecting the driving cable to the target joint through a constant-length cable sleeve. Based on the aforementioned design, the linear and consistent mapping between the operational space and the joint space is realized, significantly simplifying the kinematic model. Prototype experiments validate the manipulator's extensive range of motion and high motion accuracy.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"100 ","pages":"Article 103192"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000576","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A cable-driven manipulator demonstrates significant application in cramped environments, such as space maintenance and equipment monitoring, owing to its slender body and excellent flexibility. However, in traditional designs, the mapping between the operational space and the joint space is nonlinear and non-consistent, and the driving cables are also coupled. Consequently, the kinematics and dynamics become highly complex, posing challenges in enhancing efficiency and precision in trajectory planning and control. This paper introduces a novel linear decoupling cable-driven manipulator with independent driving joints. Two sets of nonlinear transmission mechanisms are designed and serially connected to form an equivalent linear transmission mechanism. This arrangement establishes a proportional relationship between the motor angle and joint angle, with the proportionality coefficient representing the equivalent transmission ratio. Moreover, a two-way wire-pulling mechanism is designed to achieve one-to-one driving between the motor and the joint. The nonlinear coupling problem between driving cables is solved by connecting the driving cable to the target joint through a constant-length cable sleeve. Based on the aforementioned design, the linear and consistent mapping between the operational space and the joint space is realized, significantly simplifying the kinematic model. Prototype experiments validate the manipulator's extensive range of motion and high motion accuracy.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.