Based on rotating magnetic coaxial effect of a suspended magnet rotor within the spatial universal rotating magnetic field(SURMF), a novel two-degree-of-freedom permanent magnet spherical motor (PMSM) and its lateral drive method using the rotating coaxial magnetic moment(RCMM) of the magnet rotor are proposed to address the complex electromagnetic driving structure, redundancy of control variables, complex coupled magnetic fields, and singularity of magnetic moments in current spherical motors. In terms of motor structure, the orthogonal kinematic decoupling and posture measuring of the PMSM output axis along yaw and pitch directions are realized by the universal follower mechanism (UFM) with a suspended magnet rotor. In terms of driving mechanism, with triaxial orthogonal combination coils (TOCC) as the stator, the orthogonal orientation decoupling control of the SURMF axis is adopted to realize the orthogonal decoupling of the RCMM in yaw and pitch directions, so as to realize the two-degree-of-freedom active drive of the PMSM by double decoupling of the magnetic moment and kinematics. For reducing magnetic moment orientation and motion path deviations caused by a slip angle, a compensation control method of the SURMF axis is proposed, which realizes the precise control of magnetic moment decoupling, ensures the precision and stability control of the motion path of the PMSM and lays a foundation for the application of the rotating coaxial driving theory of the PMSM.