Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-04-27 DOI:10.1038/s41467-024-48011-y
Yanfeng Fang, Hong Yang, Yuhua Hou, Wang Li, Yanfei Shen, Songqin Liu, Yuanjian Zhang
{"title":"Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides","authors":"Yanfeng Fang, Hong Yang, Yuhua Hou, Wang Li, Yanfei Shen, Songqin Liu, Yuanjian Zhang","doi":"10.1038/s41467-024-48011-y","DOIUrl":null,"url":null,"abstract":"<p>Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-48011-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅阱态的时间尺度相关性提高了碳氮化物的电化学发光效率
不同类型能量的高效相互转换在科学和技术领域都发挥着至关重要的作用。其中,电化学发光(一种由电化学反应激发的光发射)作为一种强大的生物检测工具备受关注。然而,从皮秒到几秒不等的各种电荷转移途径在时间尺度上的巨大差异极大地限制了电化学发光的效率,阻碍了它们的广泛应用。在此,我们报告了一种时间尺度配位策略,通过 Au-N 键官能化工程化浅电子陷阱态来提高碳氮化合物的电化学发光效率。定量电致化学发光动力学测量和理论计算共同揭示了 Au-N 键赋予浅电子陷阱态的特性,它协调了体发光体中快速电子转移和扩散层中共试剂缓慢氧化还原反应的时间尺度。浅电子捕获态最终加速了发射体电子-空穴重组的速率和动力学过程,创造了碳氮化物阴极电化学发光效率的新纪录,并使针对典型环境污染物亚硝酸根离子的可视电化学发光传感器具有更优越的检测范围和检测限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Light δD apatites reveal deep origin water in North China Craton intracontinental granites and basalts Unmasking AlphaFold to integrate experiments and predictions in multimeric complexes Demonstration of dual Shapiro steps in small Josephson junctions Quantum tunneling high-speed nano-excitonic modulator Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1