Antigen density and applied force control enrichment of nanobody-expressing yeast cells in microfluidics†

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-04-29 DOI:10.1039/D4LC00011K
Merlin Sanicas, Rémy Torro, Laurent Limozin and Patrick Chames
{"title":"Antigen density and applied force control enrichment of nanobody-expressing yeast cells in microfluidics†","authors":"Merlin Sanicas, Rémy Torro, Laurent Limozin and Patrick Chames","doi":"10.1039/D4LC00011K","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>In vitro</em> display technologies such as yeast display have been instrumental in developing the selection of new antibodies, antibody fragments or nanobodies that bind to a specific target, with affinity towards the target being the main factor that influences selection outcome. However, the roles of mechanical forces are being increasingly recognized as a crucial factor in the regulation and activation of effector cell function. It would thus be of interest to isolate binders behaving optimally under the influence of mechanical forces. We developed a microfluidic assay allowing the selection of yeast displaying nanobodies through antigen-specific immobilization on a surface under controlled hydrodynamic flow. This approach enabled enrichment of model yeast mixtures using tunable antigen density and applied force. This new force-based selection method opens the possibility of selecting binders by relying on both their affinity and force resistance, with implications for the design of more efficient immunotherapeutics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00011k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro display technologies such as yeast display have been instrumental in developing the selection of new antibodies, antibody fragments or nanobodies that bind to a specific target, with affinity towards the target being the main factor that influences selection outcome. However, the roles of mechanical forces are being increasingly recognized as a crucial factor in the regulation and activation of effector cell function. It would thus be of interest to isolate binders behaving optimally under the influence of mechanical forces. We developed a microfluidic assay allowing the selection of yeast displaying nanobodies through antigen-specific immobilization on a surface under controlled hydrodynamic flow. This approach enabled enrichment of model yeast mixtures using tunable antigen density and applied force. This new force-based selection method opens the possibility of selecting binders by relying on both their affinity and force resistance, with implications for the design of more efficient immunotherapeutics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗原密度和作用力控制微流体中纳米体表达酵母细胞的富集
体外展示技术(如酵母展示)有助于筛选出能与特定靶点结合的新抗体、抗体片段或纳米抗体,而对靶点的亲和力是影响筛选结果的主要因素。然而,人们越来越认识到机械力是调节和激活效应细胞功能的关键因素。因此,我们有兴趣分离出在机械力影响下表现最佳的粘合剂。我们开发了一种微流体检测方法,通过在受控流体动力下将抗原特异性固定在表面,从而筛选出显示纳米抗体的酵母。这种方法利用可调的抗原密度和作用力来富集模型酵母混合物。这种新的基于力的选择方法为通过亲和力和抗力来选择粘合剂提供了可能性,对设计更有效的免疫疗法具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
In vitro vascularized liver tumor model based on a microfluidic inverse opal scaffold for immune cell recruitment investigation. Reconstitution of human tissue barrier function for precision and personalized medicine. Two-photon microscopy of acoustofluidic trapping for highly sensitive cell analysis. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy. Early detection of hypo/hyperglycemia using microneedles electrode array-based biosensor for glucose ultrasensitive monitoring in interstitial fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1