{"title":"Mass-Based Separation of Active Brownian Particles in an Asymmetric Channel","authors":"Narender Khatri","doi":"10.1142/s0219477524500470","DOIUrl":null,"url":null,"abstract":"<p>Inertial effects should be considered for micro and nanoswimmers moving in a low-density medium confined by irregular structures that create entropic barriers, where viscous effects are no longer paramount. Here, we present a separation mechanism of self-propelled particles in a two-dimensional asymmetric channel, which leads to the drift of particles of different masses in opposite directions. In particular, this mechanism is based on the combined action of the spatial asymmetry of the channel structure, the temporal asymmetry inherent in particles dynamics and an external static force. This work is relevant for potential applications that can be found in the development of lab-on-a-chip devices and artificial channels for separating particles of different masses.</p>","PeriodicalId":55155,"journal":{"name":"Fluctuation and Noise Letters","volume":"94 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluctuation and Noise Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219477524500470","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Inertial effects should be considered for micro and nanoswimmers moving in a low-density medium confined by irregular structures that create entropic barriers, where viscous effects are no longer paramount. Here, we present a separation mechanism of self-propelled particles in a two-dimensional asymmetric channel, which leads to the drift of particles of different masses in opposite directions. In particular, this mechanism is based on the combined action of the spatial asymmetry of the channel structure, the temporal asymmetry inherent in particles dynamics and an external static force. This work is relevant for potential applications that can be found in the development of lab-on-a-chip devices and artificial channels for separating particles of different masses.
期刊介绍:
Fluctuation and Noise Letters (FNL) is unique. It is the only specialist journal for fluctuations and noise, and it covers that topic throughout the whole of science in a completely interdisciplinary way. High standards of refereeing and editorial judgment are guaranteed by the selection of Editors from among the leading scientists of the field.
FNL places equal emphasis on both fundamental and applied science and the name "Letters" is to indicate speed of publication, rather than a limitation on the lengths of papers. The journal uses on-line submission and provides for immediate on-line publication of accepted papers.
FNL is interested in interdisciplinary articles on random fluctuations, quite generally. For example: noise enhanced phenomena including stochastic resonance; 1/f noise; shot noise; fluctuation-dissipation; cardiovascular dynamics; ion channels; single molecules; neural systems; quantum fluctuations; quantum computation; classical and quantum information; statistical physics; degradation and aging phenomena; percolation systems; fluctuations in social systems; traffic; the stock market; environment and climate; etc.