Theoretical investigation of lateral and rotary light drag by a vortex beam in graphene quantum dots

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2024-04-28 DOI:10.1140/epjd/s10053-024-00836-4
Saeideh Kevin, Ali Hamrah Gharamaleki
{"title":"Theoretical investigation of lateral and rotary light drag by a vortex beam in graphene quantum dots","authors":"Saeideh Kevin,&nbsp;Ali Hamrah Gharamaleki","doi":"10.1140/epjd/s10053-024-00836-4","DOIUrl":null,"url":null,"abstract":"<div><p>A vortex beam of light is used to enhance and control the lateral and rotary light drag effects in three-level graphene quantum dots. In this study, by using a vortex beam, two practical parameters are introduced to control the optical properties of the system and consequently enhance both the lateral and rotary light drag effects. These parameters are the orbital angular momentum and the azimuthal phase of the applied controlling vortex beam. By increasing the orbital angular momentum of the vortex beam, the absorption of the probe field decreases, while the lateral and rotary light drag effects increase. Furthermore, we found that the azimuthal phase of the vortex beam has a substantial impact on the optical properties of the probe field. Thus, it can be utilized as an efficient parameter for enhancing and controlling light drag effects.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Lateral light drag as a function of the medium transverse velocity. As demonstrated, increasing the amount of topological charge (l) and consequently the orbital angular momentum results in enhanced lateral light drag</p></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00836-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A vortex beam of light is used to enhance and control the lateral and rotary light drag effects in three-level graphene quantum dots. In this study, by using a vortex beam, two practical parameters are introduced to control the optical properties of the system and consequently enhance both the lateral and rotary light drag effects. These parameters are the orbital angular momentum and the azimuthal phase of the applied controlling vortex beam. By increasing the orbital angular momentum of the vortex beam, the absorption of the probe field decreases, while the lateral and rotary light drag effects increase. Furthermore, we found that the azimuthal phase of the vortex beam has a substantial impact on the optical properties of the probe field. Thus, it can be utilized as an efficient parameter for enhancing and controlling light drag effects.

Graphical abstract

Lateral light drag as a function of the medium transverse velocity. As demonstrated, increasing the amount of topological charge (l) and consequently the orbital angular momentum results in enhanced lateral light drag

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯量子点涡流束横向和旋转光阻力的理论研究
涡旋光束用于增强和控制三层石墨烯量子点的横向和旋转光阻力效应。在这项研究中,通过使用涡旋光束,引入了两个实用参数来控制该系统的光学特性,从而增强横向和旋转光阻力效应。这两个参数是控制涡流束的轨道角动量和方位角相位。通过增加漩涡束的轨道角动量,探针场的吸收会减少,而横向和旋转光阻力效应则会增加。此外,我们还发现漩涡束的方位角相位对探测场的光学特性有很大影响。因此,它可以被用作增强和控制光阻力效应的有效参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
Characteristics, implementation, and applications of special perfect entanglers Investigation of structural, IR spectral, thermodynamics and excitation property alterations in (AlN)12 cluster under external electric fields Enhanced thermoelectric properties of zinc porphyrin dimers-based molecular devices Conservation of the number of nodes in the wavefunctions of one-electron diatomic quasimolecules GRASIAN: shaping and characterization of the cold hydrogen and deuterium beams for the forthcoming first demonstration of gravitational quantum states of atoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1