H-ACO with Consecutive Bases Pairing Constraint for Designing DNA Sequences

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-04-29 DOI:10.1007/s12539-024-00614-1
Xuwei Yang, Donglin Zhu, Can Yang, Changjun Zhou
{"title":"H-ACO with Consecutive Bases Pairing Constraint for Designing DNA Sequences","authors":"Xuwei Yang, Donglin Zhu, Can Yang, Changjun Zhou","doi":"10.1007/s12539-024-00614-1","DOIUrl":null,"url":null,"abstract":"<p>DNA computing is a novel computing method that does not rely on traditional computers. The design of DNA sequences is a crucial step in DNA computing, and the quality of the sequence design directly affects the results of DNA computing. In this paper, a new constraint called the consecutive base pairing constraint is proposed to limit specific base pairings in DNA sequence design. Additionally, to improve the efficiency and capability of DNA sequence design, the Hierarchy-ant colony (H-ACO) algorithm is introduced, which combines the features of multiple algorithms and optimizes discrete numerical calculations. Experimental results show that the H-ACO algorithm performs well in DNA sequence design. Finally, this paper compares a series of constraint values and NUPACK simulation data with previous design results, and the DNA sequence set designed in this paper has more advantages.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"5 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00614-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA computing is a novel computing method that does not rely on traditional computers. The design of DNA sequences is a crucial step in DNA computing, and the quality of the sequence design directly affects the results of DNA computing. In this paper, a new constraint called the consecutive base pairing constraint is proposed to limit specific base pairings in DNA sequence design. Additionally, to improve the efficiency and capability of DNA sequence design, the Hierarchy-ant colony (H-ACO) algorithm is introduced, which combines the features of multiple algorithms and optimizes discrete numerical calculations. Experimental results show that the H-ACO algorithm performs well in DNA sequence design. Finally, this paper compares a series of constraint values and NUPACK simulation data with previous design results, and the DNA sequence set designed in this paper has more advantages.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带连续碱基配对约束的 H-ACO 设计 DNA 序列
DNA 计算是一种不依赖传统计算机的新型计算方法。DNA 序列的设计是 DNA 计算的关键步骤,序列设计的质量直接影响 DNA 计算的结果。本文提出了一种名为连续碱基配对约束的新约束,以限制 DNA 序列设计中的特定碱基配对。此外,为了提高 DNA 序列设计的效率和能力,本文引入了层次-蚁群(H-ACO)算法,该算法结合了多种算法的特点,优化了离散数值计算。实验结果表明,H-ACO 算法在 DNA 序列设计中表现良好。最后,本文将一系列约束值和 NUPACK 仿真数据与之前的设计结果进行了比较,结果表明本文设计的 DNA 序列集更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
SpatialCVGAE: Consensus Clustering Improves Spatial Domain Identification of Spatial Transcriptomics Using VGAE. DeepPD: A Deep Learning Method for Predicting Peptide Detectability Based on Multi-feature Representation and Information Bottleneck. Repurposing Drugs for Infectious Diseases by Graph Convolutional Network with Sensitivity-Based Graph Reduction. Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1