Causal rule ensemble method for estimating heterogeneous treatment effect with consideration of prognostic effects

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-04-27 DOI:10.1177/09622802241247728
Mayu Hiraishi, Ke Wan, Kensuke Tanioka, Hiroshi Yadohisa, Toshio Shimokawa
{"title":"Causal rule ensemble method for estimating heterogeneous treatment effect with consideration of prognostic effects","authors":"Mayu Hiraishi, Ke Wan, Kensuke Tanioka, Hiroshi Yadohisa, Toshio Shimokawa","doi":"10.1177/09622802241247728","DOIUrl":null,"url":null,"abstract":"We propose a novel framework based on the RuleFit method to estimate heterogeneous treatment effect in randomized clinical trials. The proposed method estimates a rule ensemble comprising a set of prognostic rules, a set of prescriptive rules, as well as the linear effects of the original predictor variables. The prescriptive rules provide an interpretable description of the heterogeneous treatment effect. By including a prognostic term in the proposed model, the selected rule is represented as an heterogeneous treatment effect that excludes other effects. We confirmed that the performance of the proposed method was equivalent to that of other ensemble learning methods through numerical simulations and demonstrated the interpretation of the proposed method using a real data application.","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":"43 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241247728","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel framework based on the RuleFit method to estimate heterogeneous treatment effect in randomized clinical trials. The proposed method estimates a rule ensemble comprising a set of prognostic rules, a set of prescriptive rules, as well as the linear effects of the original predictor variables. The prescriptive rules provide an interpretable description of the heterogeneous treatment effect. By including a prognostic term in the proposed model, the selected rule is represented as an heterogeneous treatment effect that excludes other effects. We confirmed that the performance of the proposed method was equivalent to that of other ensemble learning methods through numerical simulations and demonstrated the interpretation of the proposed method using a real data application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑预后效应的因果规则集合法估算异质性治疗效果
我们提出了一种基于 RuleFit 方法的新框架,用于估算随机临床试验中的异质性治疗效果。该方法估算的规则集合包括一组预后规则、一组描述性规则以及原始预测变量的线性效应。规定性规则提供了对异质性治疗效果的可解释性描述。通过在拟议模型中加入预后项,所选规则被表示为排除了其他效应的异质性治疗效应。我们通过数值模拟证实了所提方法的性能与其他集合学习方法相当,并利用真实数据应用演示了所提方法的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1