{"title":"Designing a Novel di-epitope Diphtheria Vaccine: A Rational Structural Immunoinformatics Approach","authors":"Mahsa Shadmani, Atefeh Ghasemnejad, Samira Bazmara, Kamran Pooshang Bagheri","doi":"10.2174/0115734099294259240411073449","DOIUrl":null,"url":null,"abstract":"Background: The design of an epitope-based vaccine against diphtheria toxin (DT) originated from the idea that many strong binder epitopes may be structurally located in the depth of DT. Subsequently, many ineffective antibodies may be produced by the presentation of those epitopes to T and B lymphocytes. The other critical issue is the population coverage of a vaccine that has been neglected in traditional vaccines. Objective: Given the issues above, our study aimed to design a peptide-based diphtheria vaccine, considering the issues of unwanted epitopes and population coverage. Methods: The frequencies of pre-determined HLA alleles were listed. A country in which almost all HLA alleles had been determined in almost all geographical distribution was selected. The epitopes within the sequence of diphtheria toxin were predicted by the NetMHCIIPan server based on the selected HLA alleles. Strong binder epitopes on the surface of diphtheria toxin were selected by structural epitope mapping. The epitopes, which cover almost all the human population for each of the HLA alleles in the candidate country, were then selected as epitopebased vaccines. Results: At first, 793 strong binder epitopes were predicted, of which 82 were surface epitopes. Nine surface epitopes whose amino acids had extruding side chains were selected. Finally, 2 epitopes had the most population coverage and were suggested as a di-epitope diphtheria vaccine. The population coverage of the di-epitope vaccine in France and the world was 100 and 99.24 %, respectively. HLA-DP had the most roles in epitope presentation.","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734099294259240411073449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The design of an epitope-based vaccine against diphtheria toxin (DT) originated from the idea that many strong binder epitopes may be structurally located in the depth of DT. Subsequently, many ineffective antibodies may be produced by the presentation of those epitopes to T and B lymphocytes. The other critical issue is the population coverage of a vaccine that has been neglected in traditional vaccines. Objective: Given the issues above, our study aimed to design a peptide-based diphtheria vaccine, considering the issues of unwanted epitopes and population coverage. Methods: The frequencies of pre-determined HLA alleles were listed. A country in which almost all HLA alleles had been determined in almost all geographical distribution was selected. The epitopes within the sequence of diphtheria toxin were predicted by the NetMHCIIPan server based on the selected HLA alleles. Strong binder epitopes on the surface of diphtheria toxin were selected by structural epitope mapping. The epitopes, which cover almost all the human population for each of the HLA alleles in the candidate country, were then selected as epitopebased vaccines. Results: At first, 793 strong binder epitopes were predicted, of which 82 were surface epitopes. Nine surface epitopes whose amino acids had extruding side chains were selected. Finally, 2 epitopes had the most population coverage and were suggested as a di-epitope diphtheria vaccine. The population coverage of the di-epitope vaccine in France and the world was 100 and 99.24 %, respectively. HLA-DP had the most roles in epitope presentation.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.