Raja Zeeshan Haider, Baber Aslam, Haider Abbas, Zafar Iqbal
{"title":"C2-Eye: framework for detecting command and control (C2) connection of supply chain attacks","authors":"Raja Zeeshan Haider, Baber Aslam, Haider Abbas, Zafar Iqbal","doi":"10.1007/s10207-024-00850-y","DOIUrl":null,"url":null,"abstract":"<p>Supply chain attacks are potent cyber attacks for widespread ramifications by compromising supply chains. Supply chain attacks are difficult to detect as the malware is installed through trustworthy supply chains, missing signs of infection and making deployed security controls ineffective. Recent increases in supply chain attacks warrant a Zero-trust model and innovative solutions for detecting supply chain attacks. Supply chain malware need to establish a Command and Control (C2) connection as a communication link with the attacker to proceed on the privileged pathway. Discovery of the C2 channel between the attacker and supply chain malware can lead to detection of the attack. The most promising technique for detecting supply chain attacks is monitoring host-based indicators and correlating these with associated network activity for early discovery of C2 connection. Proposed framework has introduced a novel approach of detecting C2 over DNS by incorporating host-based activity with corresponding network activity coupled with threat intelligence. C2-Eye integrates process-specific host-based features, correlated network activity, DNS metadata, DNS semantic analysis, and real time threat intelligence from publicly available resources for detecting C2 of supply chain attacks. Besides, C2-Eye monitors the exploitation of C2 channel for probable data exfiltration. C2-Eye has introduced a distinctive featureset with 22 novel features specific to supply chain attack, enabling detection of the attack with F1-score of 98.70%.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"32 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00850-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Supply chain attacks are potent cyber attacks for widespread ramifications by compromising supply chains. Supply chain attacks are difficult to detect as the malware is installed through trustworthy supply chains, missing signs of infection and making deployed security controls ineffective. Recent increases in supply chain attacks warrant a Zero-trust model and innovative solutions for detecting supply chain attacks. Supply chain malware need to establish a Command and Control (C2) connection as a communication link with the attacker to proceed on the privileged pathway. Discovery of the C2 channel between the attacker and supply chain malware can lead to detection of the attack. The most promising technique for detecting supply chain attacks is monitoring host-based indicators and correlating these with associated network activity for early discovery of C2 connection. Proposed framework has introduced a novel approach of detecting C2 over DNS by incorporating host-based activity with corresponding network activity coupled with threat intelligence. C2-Eye integrates process-specific host-based features, correlated network activity, DNS metadata, DNS semantic analysis, and real time threat intelligence from publicly available resources for detecting C2 of supply chain attacks. Besides, C2-Eye monitors the exploitation of C2 channel for probable data exfiltration. C2-Eye has introduced a distinctive featureset with 22 novel features specific to supply chain attack, enabling detection of the attack with F1-score of 98.70%.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.