A novel peridynamics refinement method with dual-horizon peridynamics

IF 8.7 2区 工程技术 Q1 Mathematics Engineering with Computers Pub Date : 2024-04-28 DOI:10.1007/s00366-024-01983-3
Zhixin Zeng, Xiong Zhang
{"title":"A novel peridynamics refinement method with dual-horizon peridynamics","authors":"Zhixin Zeng, Xiong Zhang","doi":"10.1007/s00366-024-01983-3","DOIUrl":null,"url":null,"abstract":"<p>A novel adaptive refinement method is proposed for ordinary state-based PD in both 2D and 3D simulation. We perform an efficient adaptive refinement by splitting a parent particle into several child particles directly which does not require any information from its adjacent particles. The state variables and neighbor list of the child particles can be obtained directly from their parent particles, so that the proposed adaptive refinement method is very efficient and can be easily applied in both 2D and 3D cases without complex adjacent particle list building. To maintain simulation accuracy, the deformation of the parent particles need to be taken into consideration in the refinement process. Therefore, the accumulated strain of a PD particle is defined to calculate the position vector of its child particles in current configuration. With the consideration of the deformation of the parent particle, the fake damage is avoid. And a new criterion is established based on the particle accumulated strain to efficiently determine the particles need to be refined. The numerical examples studied show that the proposed adaptive refinement correctly captures the complicated crack propagation process and eliminates the fake crack growth with slight extra simulation cost, compared to the coarse discretization.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"16 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01983-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A novel adaptive refinement method is proposed for ordinary state-based PD in both 2D and 3D simulation. We perform an efficient adaptive refinement by splitting a parent particle into several child particles directly which does not require any information from its adjacent particles. The state variables and neighbor list of the child particles can be obtained directly from their parent particles, so that the proposed adaptive refinement method is very efficient and can be easily applied in both 2D and 3D cases without complex adjacent particle list building. To maintain simulation accuracy, the deformation of the parent particles need to be taken into consideration in the refinement process. Therefore, the accumulated strain of a PD particle is defined to calculate the position vector of its child particles in current configuration. With the consideration of the deformation of the parent particle, the fake damage is avoid. And a new criterion is established based on the particle accumulated strain to efficiently determine the particles need to be refined. The numerical examples studied show that the proposed adaptive refinement correctly captures the complicated crack propagation process and eliminates the fake crack growth with slight extra simulation cost, compared to the coarse discretization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用双水平周流体力学的新型周流体力学细化方法
针对二维和三维模拟中基于状态的普通 PD,我们提出了一种新颖的自适应细化方法。我们通过将一个父粒子直接拆分成多个子粒子来执行高效的自适应细化,而无需从其相邻粒子中获取任何信息。子粒子的状态变量和相邻粒子列表可直接从父粒子中获取,因此所提出的自适应细化方法非常高效,可轻松应用于二维和三维情况,而无需建立复杂的相邻粒子列表。为了保持仿真精度,在细化过程中需要考虑父粒子的变形。因此,需要定义一个 PD 粒子的累积应变,以计算其子粒子在当前配置中的位置矢量。考虑到父粒子的变形,可以避免假损伤。并根据粒子累积应变建立了一个新的标准,以有效地确定需要细化的粒子。研究的数值示例表明,与粗离散化相比,所提出的自适应细化方法能正确捕捉复杂的裂纹扩展过程,并消除假裂纹的增长,但仿真成本略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
期刊最新文献
A universal material model subroutine for soft matter systems A second-generation URANS model (STRUCT- $$\epsilon $$ ) applied to a generic side mirror and its impact on sound generation Multiphysics discovery with moving boundaries using Ensemble SINDy and peridynamic differential operator Adaptive Kriging-based method with learning function allocation scheme and hybrid convergence criterion for efficient structural reliability analysis A new kernel-based approach for solving general fractional (integro)-differential-algebraic equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1