首页 > 最新文献

Engineering with Computers最新文献

英文 中文
Simulating the aftermath of Northern European Enclosure Dam (NEED) break and flooding of European coast 模拟北欧封闭水坝(NEED)决堤和欧洲海岸洪水泛滥的后果
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-12 DOI: 10.1007/s00366-024-02055-2
Paweł Maczuga, Marcin Łoś, Eirik Valseth, Albert Oliver Serra, Leszek Siwik, Elisabede Alberdi Celaya, Anna Paszyńska, Maciej Paszyński

The Northern European Enclosure Dam (NEED) is a hypothetical project to prevent flooding in European countries following the rising ocean level due to melting arctic glaciers. This project involves the construction of two large dams between Scotland and Norway, as well as England and France. The anticipated cost of this project is 250 to 500 billion euros. In this paper, we present the simulation of the aftermath of flooding on the European coastline caused by a catastrophic break of this hypothetical dam. From our simulation results, we can observe a traveling wave after the accident, with a velocity of approximately 45 kms per hour, raising the sea level permanently inside the dammed region. This observation implies a need to construct additional dams or barriers protecting the Netherlands’ northern coastline and the Baltic Sea’s interior. Our simulations have been obtained using the following building blocks. First, a graph transformation model was applied to generate an adaptive mesh, refined towards the seabed and the seashore topography, approximating the topography of the Earth. We employ the composition graph grammar model to break the mesh’s triangular elements without generating hanging nodes. Second, the wave equation is formulated in a spherical latitude-longitude system of coordinates and solved by a high-order time integration scheme using the generalized (alpha) method. While our paper mainly focuses on the simulation of the NEED dam break, we also provide a stand-alone tool to generate an adaptive mesh of the whole Earth. We can use our software as a stand-alone package in FEniCS or other simulation software.

北欧封闭大坝(NEED)是一个假想项目,旨在防止欧洲国家因北极冰川融化导致海平面上升而发生洪灾。该项目包括在苏格兰和挪威以及英格兰和法国之间建造两座大型水坝。该项目预计耗资 2,500 亿至 5,000 亿欧元。在本文中,我们将模拟这一假想大坝发生灾难性断裂后欧洲海岸线洪水泛滥的后果。从模拟结果中,我们可以观察到事故发生后的行波,其速度约为每小时 45 公里,使大坝区域内的海平面永久性地升高。这意味着有必要建造更多的大坝或屏障来保护荷兰北部海岸线和波罗的海内部。我们的模拟是通过以下构建模块实现的。首先,应用图转换模型生成自适应网格,并根据海床和海岸地形进行细化,以近似地球地形。我们采用组成图语法模型来打破网格的三角形元素,而不会产生悬挂节点。其次,我们在球形经纬度坐标系中建立了波方程,并采用广义 (α) 方法的高阶时间积分方案进行求解。虽然我们的论文主要关注 NEED 大坝断裂的模拟,但我们也提供了一个独立的工具来生成整个地球的自适应网格。我们可以将我们的软件作为 FEniCS 或其他仿真软件的独立软件包使用。
{"title":"Simulating the aftermath of Northern European Enclosure Dam (NEED) break and flooding of European coast","authors":"Paweł Maczuga, Marcin Łoś, Eirik Valseth, Albert Oliver Serra, Leszek Siwik, Elisabede Alberdi Celaya, Anna Paszyńska, Maciej Paszyński","doi":"10.1007/s00366-024-02055-2","DOIUrl":"https://doi.org/10.1007/s00366-024-02055-2","url":null,"abstract":"<p>The Northern European Enclosure Dam (NEED) is a hypothetical project to prevent flooding in European countries following the rising ocean level due to melting arctic glaciers. This project involves the construction of two large dams between Scotland and Norway, as well as England and France. The anticipated cost of this project is 250 to 500 billion euros. In this paper, we present the simulation of the aftermath of flooding on the European coastline caused by a catastrophic break of this hypothetical dam. From our simulation results, we can observe a traveling wave after the accident, with a velocity of approximately 45 kms per hour, raising the sea level permanently inside the dammed region. This observation implies a need to construct additional dams or barriers protecting the Netherlands’ northern coastline and the Baltic Sea’s interior. Our simulations have been obtained using the following building blocks. First, a graph transformation model was applied to generate an adaptive mesh, refined towards the seabed and the seashore topography, approximating the topography of the Earth. We employ the composition graph grammar model to break the mesh’s triangular elements without generating hanging nodes. Second, the wave equation is formulated in a spherical latitude-longitude system of coordinates and solved by a high-order time integration scheme using the generalized <span>(alpha)</span> method. While our paper mainly focuses on the simulation of the NEED dam break, we also provide a stand-alone tool to generate an adaptive mesh of the whole Earth. We can use our software as a stand-alone package in FEniCS or other simulation software.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable data-driven micromechanics model trained with pairwise fiber data for composite materials with randomly distributed fibers 针对随机分布纤维的复合材料,利用成对纤维数据训练可扩展的数据驱动微观力学模型
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-11 DOI: 10.1007/s00366-024-02059-y
Chaeyoung Hong, Wooseok Ji

A machine learning (ML) model can provide a precise prediction very quickly, if it is well trained with a massive amount of reliable training data. A finite element method (FEM) is often employed to generate substantial training data. However, such a training process can be computationally burdensome especially for a geometrically complex structure. More critically, a specific size and/or configuration of a training model may confine the applicability of the trained model to the same kind only. In this study, we present a scalable ML approach with an efficient training strategy for micromechanical analysis of fiber-reinforced composite materials. Here, a scalable data-driven micromechanics model (SDMM) is proposed for predicting stresses in unidirectional composites with random fiber arrays. The training data for SDMM is defined in the unit of a fiber pair. A single dataset is composed of a stress value between a fiber pair and an image highlighting the pair with nearby fibers affecting the stress. Therefore, the training microstructures can be considerably small, but the pairwise ML model can be applied to every pair of adjacent two fibers inside a much larger microstructure. The scalability of SDMM is demonstrated by predicting the maximum principal stress values acting between every fiber pair in a super-sized representative volume element. The accuracy of the prediction results is evaluated by finite element analysis results. It is shown that a certain number of nearby fibers is required in the training datasets for accurate prediction.

如果使用大量可靠的训练数据对机器学习(ML)模型进行良好的训练,该模型就能很快提供精确的预测结果。通常采用有限元法(FEM)来生成大量的训练数据。然而,这样的训练过程在计算上是非常繁重的,尤其是对于几何结构复杂的结构。更重要的是,训练模型的特定尺寸和/或配置可能会限制训练模型仅适用于同类结构。在本研究中,我们提出了一种可扩展的 ML 方法,该方法具有高效的训练策略,可用于纤维增强复合材料的微机械分析。本文提出了一种可扩展的数据驱动微观力学模型(SDMM),用于预测随机纤维阵列单向复合材料的应力。SDMM 的训练数据以纤维对为单位。单个数据集由纤维对之间的应力值和突出显示纤维对的图像以及影响应力的附近纤维组成。因此,训练微结构可以非常小,但成对 ML 模型可以应用于更大微结构中每一对相邻的两根纤维。通过预测超大代表体积元素中每对纤维之间的最大主应力值,证明了 SDMM 的可扩展性。预测结果的准确性通过有限元分析结果进行评估。结果表明,要获得准确的预测结果,训练数据集中需要一定数量的邻近纤维。
{"title":"Scalable data-driven micromechanics model trained with pairwise fiber data for composite materials with randomly distributed fibers","authors":"Chaeyoung Hong, Wooseok Ji","doi":"10.1007/s00366-024-02059-y","DOIUrl":"https://doi.org/10.1007/s00366-024-02059-y","url":null,"abstract":"<p>A machine learning (ML) model can provide a precise prediction very quickly, if it is well trained with a massive amount of reliable training data. A finite element method (FEM) is often employed to generate substantial training data. However, such a training process can be computationally burdensome especially for a geometrically complex structure. More critically, a specific size and/or configuration of a training model may confine the applicability of the trained model to the same kind only. In this study, we present a scalable ML approach with an efficient training strategy for micromechanical analysis of fiber-reinforced composite materials. Here, a scalable data-driven micromechanics model (SDMM) is proposed for predicting stresses in unidirectional composites with random fiber arrays. The training data for SDMM is defined in the unit of a fiber pair. A single dataset is composed of a stress value between a fiber pair and an image highlighting the pair with nearby fibers affecting the stress. Therefore, the training microstructures can be considerably small, but the pairwise ML model can be applied to every pair of adjacent two fibers inside a much larger microstructure. The scalability of SDMM is demonstrated by predicting the maximum principal stress values acting between every fiber pair in a super-sized representative volume element. The accuracy of the prediction results is evaluated by finite element analysis results. It is shown that a certain number of nearby fibers is required in the training datasets for accurate prediction.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3d fluid–structure interaction simulation with an Arbitrary–Lagrangian–Eulerian approach with applications to flying objects 采用任意-拉格朗日-欧勒方法进行三维流固耦合模拟,并将其应用于飞行物体
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-11 DOI: 10.1007/s00366-024-02043-6
Daniele Di Cristofaro, Attilio Frangi, Massimiliano Cremonesi

Air-structure interaction is a key aspect to account for during the design of Micro Air Vehicles. In this context, modelisation and numerical simulations represent a powerful tool to analyse aerodynamic performances. This work proposes an advanced fluid–structure interaction numerical technique for the simulation of dragonfly wings, considered one of the most interesting model due to their complex flapping kinematic. The fluid subproblem, described by incompressible Navier–Stokes equations, is solved in a Finite Element Arbitrary-Lagrangian-Eulerian framework, while the solid subproblem is addressed using structural Finite Element, such as membranes and beams. Moreover, a novel remeshing algorithm based on connectivity manipulation and refinement procedure has been implemented to reduce element distortion in fluid mesh, thus increasing the accuracy of the fluid solution. Firstly, the deformation of a single hindwing has been studied. Secondly, the dragonfly model is enriched by incorporating the forewing and a simplified thorax geometry. Preliminary results highlight the complex dynamic of the fluid around the body as well as the efficiency of the proposed mesh generation algorithm.

空气与结构的相互作用是微型飞行器设计过程中需要考虑的一个关键方面。在这种情况下,建模和数值模拟是分析空气动力性能的有力工具。本研究提出了一种先进的流固耦合数值模拟技术,用于模拟蜻蜓机翼,由于蜻蜓机翼复杂的拍打运动学,蜻蜓机翼被认为是最有趣的模型之一。流体子问题由不可压缩纳维-斯托克斯方程描述,在有限元任意-拉格朗日-欧拉框架内求解,而固体子问题则使用结构有限元(如膜和梁)解决。此外,还采用了一种基于连接操作和细化程序的新型重网格算法,以减少流体网格中的元素变形,从而提高流体求解的精度。首先,研究了单个后翼的变形。其次,通过加入前翼和简化的胸部几何形状,丰富了蜻蜓模型。初步结果凸显了身体周围流体的复杂动态以及所建议的网格生成算法的效率。
{"title":"3d fluid–structure interaction simulation with an Arbitrary–Lagrangian–Eulerian approach with applications to flying objects","authors":"Daniele Di Cristofaro, Attilio Frangi, Massimiliano Cremonesi","doi":"10.1007/s00366-024-02043-6","DOIUrl":"https://doi.org/10.1007/s00366-024-02043-6","url":null,"abstract":"<p>Air-structure interaction is a key aspect to account for during the design of Micro Air Vehicles. In this context, modelisation and numerical simulations represent a powerful tool to analyse aerodynamic performances. This work proposes an advanced fluid–structure interaction numerical technique for the simulation of dragonfly wings, considered one of the most interesting model due to their complex flapping kinematic. The fluid subproblem, described by incompressible Navier–Stokes equations, is solved in a Finite Element Arbitrary-Lagrangian-Eulerian framework, while the solid subproblem is addressed using structural Finite Element, such as membranes and beams. Moreover, a novel remeshing algorithm based on connectivity manipulation and refinement procedure has been implemented to reduce element distortion in fluid mesh, thus increasing the accuracy of the fluid solution. Firstly, the deformation of a single hindwing has been studied. Secondly, the dragonfly model is enriched by incorporating the forewing and a simplified thorax geometry. Preliminary results highlight the complex dynamic of the fluid around the body as well as the efficiency of the proposed mesh generation algorithm.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-based topology optimization using maximum entropy basis functions-based meshless method 使用基于最大熵基函数的无网格法进行基于应力的拓扑优化
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-09 DOI: 10.1007/s00366-024-02047-2
Imran Khan, Zahur Ullah, Baseer Ullah, Siraj-ul-Islam, Wajid Khan

This paper presents volume-constrained stress minimization-based, topology optimization. The maximum entropy (maxent) basis functions-based meshless method for two-dimensional linear elastic structures is explored. This work focuses to test the effectiveness of the meshless method in handling the stress singularities during the topology optimization process. The commonly used moving least square basis functions are replaced with maximum entropy basis functions, as the latter possess weak Kronecker delta property which leads to the finite element method (FEM) like displacement boundary conditions imposition. The maxent basis functions are calculated once at the beginning of the simulation and then used in optimization at every iteration. Young’s modulus for each background cell is interpolated using the modified solid isotropic material with penalization approach. An open source pre-processor CUBIT is used. A comparison of the proposed approach with the FEM is carried out using a diverse set of problems with simple and complex geometries of structured and unstructured discretization, to establish that maxent-based meshless methods perform better in tackling the stress singularities due to its smooth stress field.

本文提出了基于体积约束应力最小化的拓扑优化方法。探讨了基于最大熵(maxent)基函数的二维线性弹性结构无网格方法。这项工作的重点是测试无网格法在拓扑优化过程中处理应力奇异性的有效性。常用的移动最小平方基函数被最大熵基函数取代,因为后者具有弱 Kronecker delta 特性,可导致类似有限元法(FEM)的位移边界条件施加。最大熵基函数在模拟开始时计算一次,然后在每次迭代时用于优化。每个背景单元的杨氏模量使用修正的各向同性固体材料和惩罚方法进行插值。使用的是开源预处理器 CUBIT。通过对结构化和非结构化离散的简单和复杂几何形状的各种问题进行比较,确定了基于 maxent 的无网格方法因其应力场平滑而在处理应力奇异性方面表现更佳。
{"title":"Stress-based topology optimization using maximum entropy basis functions-based meshless method","authors":"Imran Khan, Zahur Ullah, Baseer Ullah, Siraj-ul-Islam, Wajid Khan","doi":"10.1007/s00366-024-02047-2","DOIUrl":"https://doi.org/10.1007/s00366-024-02047-2","url":null,"abstract":"<p>This paper presents volume-constrained stress minimization-based, topology optimization. The maximum entropy (maxent) basis functions-based meshless method for two-dimensional linear elastic structures is explored. This work focuses to test the effectiveness of the meshless method in handling the stress singularities during the topology optimization process. The commonly used moving least square basis functions are replaced with maximum entropy basis functions, as the latter possess weak Kronecker delta property which leads to the finite element method (FEM) like displacement boundary conditions imposition. The maxent basis functions are calculated once at the beginning of the simulation and then used in optimization at every iteration. Young’s modulus for each background cell is interpolated using the modified solid isotropic material with penalization approach. An open source pre-processor CUBIT is used. A comparison of the proposed approach with the FEM is carried out using a diverse set of problems with simple and complex geometries of structured and unstructured discretization, to establish that maxent-based meshless methods perform better in tackling the stress singularities due to its smooth stress field.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient inverse design optimization through multi-fidelity simulations, machine learning, and boundary refinement strategies 通过多保真模拟、机器学习和边界细化策略实现高效的反向设计优化
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-09 DOI: 10.1007/s00366-024-02053-4
Luka Grbcic, Juliane Müller, Wibe Albert de Jong

This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute, through the strategic synergy of multi-fidelity evaluations, machine learning models, and optimization algorithms. The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem. It leverages a machine learning model trained with low-fidelity simulation data, in each optimization cycle, thereby proficiently predicting a target variable and discerning whether a high-fidelity simulation is necessitated, which notably conserves computational resources. Additionally, the machine learning model is strategically deployed prior to optimization to compress the design space boundaries, thereby further accelerating convergence toward the optimal solution. The methodology has been employed to enhance two optimization algorithms, namely Differential Evolution and Particle Swarm Optimization. Comparative analyses illustrate performance improvements across both algorithms. Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.

本文介绍了一种方法,旨在通过多保真度评估、机器学习模型和优化算法的战略协同作用,在计算能力有限的情况下增强反设计优化过程。本文针对两个不同的工程逆向设计问题:机翼逆向设计和标量场重建问题,对所提出的方法进行了分析。该方法在每个优化周期中利用低保真仿真数据训练的机器学习模型,从而熟练预测目标变量并判断是否有必要进行高保真仿真,这显著节省了计算资源。此外,机器学习模型会在优化之前进行战略性部署,以压缩设计空间边界,从而进一步加快向最优解的收敛。该方法被用于增强两种优化算法,即差分进化和粒子群优化。对比分析表明,这两种算法的性能都有所提高。值得注意的是,这种方法适用于任何逆向设计应用,促进了代表性低保真 ML 模型与高保真仿真之间的协同作用,并可无缝应用于各种基于种群的优化算法。
{"title":"Efficient inverse design optimization through multi-fidelity simulations, machine learning, and boundary refinement strategies","authors":"Luka Grbcic, Juliane Müller, Wibe Albert de Jong","doi":"10.1007/s00366-024-02053-4","DOIUrl":"https://doi.org/10.1007/s00366-024-02053-4","url":null,"abstract":"<p>This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute, through the strategic synergy of multi-fidelity evaluations, machine learning models, and optimization algorithms. The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem. It leverages a machine learning model trained with low-fidelity simulation data, in each optimization cycle, thereby proficiently predicting a target variable and discerning whether a high-fidelity simulation is necessitated, which notably conserves computational resources. Additionally, the machine learning model is strategically deployed prior to optimization to compress the design space boundaries, thereby further accelerating convergence toward the optimal solution. The methodology has been employed to enhance two optimization algorithms, namely Differential Evolution and Particle Swarm Optimization. Comparative analyses illustrate performance improvements across both algorithms. Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing spatial discretization error on coarse CFD simulations using an openFOAM-embedded deep learning framework 使用嵌入深度学习框架的 openFOAM 减少粗糙 CFD 模拟的空间离散化误差
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-09 DOI: 10.1007/s00366-024-02057-0
J. Gonzalez-Sieiro, D. Pardo, V. Nava, V. M. Calo, M. Towara

We propose a method for reducing the spatial discretization error of coarse computational fluid dynamics (CFD) problems by enhancing the quality of low-resolution simulations using deep learning. We feed the model with fine-grid data after projecting it to the coarse-grid discretization. We substitute the default differencing scheme for the convection term by a feed-forward neural network that interpolates velocities from cell centers to face values to produce velocities that approximate the down-sampled fine-grid data well. The deep learning framework incorporates the open-source CFD code OpenFOAM, resulting in an end-to-end differentiable model. We automatically differentiate the CFD physics using a discrete adjoint code version. We present a fast communication method between TensorFlow (Python) and OpenFOAM (c++) that accelerates the training process. We applied the model to the flow past a square cylinder problem, reducing the error from 120% to 25% in the velocity for simulations inside the training distribution compared to the traditional solver using an x8 coarser mesh. For simulations outside the training distribution, the error reduction in the velocities was about 50%. The training is affordable in terms of time and data samples since the architecture exploits the local features of the physics.

我们提出了一种利用深度学习提高低分辨率模拟质量,从而减少粗计算流体动力学(CFD)问题空间离散化误差的方法。我们在对模型进行粗网格离散化投影后,向其输入细网格数据。我们用一个前馈神经网络替代了对流项的默认差分方案,该网络将速度从单元中心插值到面值,从而产生与向下采样的细网格数据近似的速度。深度学习框架结合了开源 CFD 代码 OpenFOAM,形成了端到端的可微分模型。我们使用离散邻接代码版本自动微分 CFD 物理。我们提出了一种 TensorFlow(Python)和 OpenFOAM(c++)之间的快速通信方法,可加速训练过程。我们将该模型应用于流过方形圆柱体的问题,与使用 x8 粗网格的传统求解器相比,在训练分布内模拟的速度误差从 120% 降至 25%。对于训练分布以外的模拟,速度误差减少了约 50%。由于该结构利用了物理学的局部特征,因此在时间和数据样本方面都可以负担得起训练费用。
{"title":"Reducing spatial discretization error on coarse CFD simulations using an openFOAM-embedded deep learning framework","authors":"J. Gonzalez-Sieiro, D. Pardo, V. Nava, V. M. Calo, M. Towara","doi":"10.1007/s00366-024-02057-0","DOIUrl":"https://doi.org/10.1007/s00366-024-02057-0","url":null,"abstract":"<p>We propose a method for reducing the spatial discretization error of coarse computational fluid dynamics (CFD) problems by enhancing the quality of low-resolution simulations using deep learning. We feed the model with fine-grid data after projecting it to the coarse-grid discretization. We substitute the default differencing scheme for the convection term by a feed-forward neural network that interpolates velocities from cell centers to face values to produce velocities that approximate the down-sampled fine-grid data well. The deep learning framework incorporates the open-source CFD code OpenFOAM, resulting in an end-to-end differentiable model. We automatically differentiate the CFD physics using a discrete adjoint code version. We present a fast communication method between TensorFlow (Python) and OpenFOAM (c++) that accelerates the training process. We applied the model to the flow past a square cylinder problem, reducing the error from 120% to 25% in the velocity for simulations inside the training distribution compared to the traditional solver using an x8 coarser mesh. For simulations outside the training distribution, the error reduction in the velocities was about 50%. The training is affordable in terms of time and data samples since the architecture exploits the local features of the physics.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-aware neural network-based parametric model-order reduction of the electromagnetic analysis for a coated component 基于物理感知神经网络的带涂层部件电磁分析参数模型阶次缩减
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-07 DOI: 10.1007/s00366-024-02056-1
SiHun Lee, Seung-Hoon Kang, Sangmin Lee, SangJoon Shin

Finite element (FE) analysis is one of the most accurate methods for predicting electromagnetic field scatter; however, it presents a significant computational overhead. In this study, we propose a data-driven parametric model-order reduction (pMOR) framework to predict the scattered electromagnetic field of FE analysis. The surface impedance of a coated component is selected as parameter of analysis. A physics-aware (PA) neural network incorporated within a least-squares hierarchical-variational autoencoder (LSH-VAE) is selected for the data-driven pMOR method. The proposed PA-LSH-VAE framework directly accesses the scattered electromagnetic field represented by a large number of degrees of freedom (DOFs). Furthermore, it captures the behavior along with the variation of the complex-valued multi-parameters. A parallel computing approach is used to generate the training data efficiently. The PA-LSH-VAE framework is designed to handle over 2 million DOFs, providing satisfactory accuracy and exhibiting a second-order speed-up factor.

有限元(FE)分析是预测电磁场散射最精确的方法之一,但其计算开销很大。在本研究中,我们提出了一种数据驱动的参数模型阶次缩减(pMOR)框架,用于预测有限元分析的散射电磁场。我们选择涂层部件的表面阻抗作为分析参数。在数据驱动的 pMOR 方法中,选择了将物理感知(PA)神经网络纳入最小二乘分层变异自动编码器(LSH-VAE)。所提出的 PA-LSH-VAE 框架可直接访问由大量自由度 (DOF) 表示的散射电磁场。此外,它还能捕捉复值多参数变化的行为。采用并行计算方法可高效生成训练数据。PA-LSH-VAE 框架可处理超过 200 万个 DOF,提供令人满意的精度,并表现出二阶加速因子。
{"title":"Physics-aware neural network-based parametric model-order reduction of the electromagnetic analysis for a coated component","authors":"SiHun Lee, Seung-Hoon Kang, Sangmin Lee, SangJoon Shin","doi":"10.1007/s00366-024-02056-1","DOIUrl":"https://doi.org/10.1007/s00366-024-02056-1","url":null,"abstract":"<p>Finite element (FE) analysis is one of the most accurate methods for predicting electromagnetic field scatter; however, it presents a significant computational overhead. In this study, we propose a data-driven parametric model-order reduction (pMOR) framework to predict the scattered electromagnetic field of FE analysis. The surface impedance of a coated component is selected as parameter of analysis. A physics-aware (PA) neural network incorporated within a least-squares hierarchical-variational autoencoder (LSH-VAE) is selected for the data-driven pMOR method. The proposed PA-LSH-VAE framework directly accesses the scattered electromagnetic field represented by a large number of degrees of freedom (DOFs). Furthermore, it captures the behavior along with the variation of the complex-valued multi-parameters. A parallel computing approach is used to generate the training data efficiently. The PA-LSH-VAE framework is designed to handle over 2 million DOFs, providing satisfactory accuracy and exhibiting a second-order speed-up factor.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Generic volume transfer for distributed mesh dynamic repartitioning 更正:分布式网格动态重新划分的通用体积转移
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-09-04 DOI: 10.1007/s00366-024-02052-5
Guillaume Damiand, Fabrice Jaillet, Vincent Vidal
{"title":"Correction to: Generic volume transfer for distributed mesh dynamic repartitioning","authors":"Guillaume Damiand, Fabrice Jaillet, Vincent Vidal","doi":"10.1007/s00366-024-02052-5","DOIUrl":"https://doi.org/10.1007/s00366-024-02052-5","url":null,"abstract":"","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical modeling of conjugate heat transfer for multiregion and multiphase systems with the Volume-of-Fluid method 用流体体积法建立多区域和多相系统共轭传热的物理模型
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-08-28 DOI: 10.1007/s00366-024-02051-6
Johannes Kind, Axel Sielaff, Peter Stephan

The Volume-of-Fluid (VOF) method is commonly used for numerical simulations of phase change phenomena, such as nucleate boiling or droplet evaporation. A key issue with the standard VOF method is the averaging of the liquid and vapor properties in interface cells, which causes non-physical conjugate heat transfer with a solid wall. Therefore, we aim at a physical model for conjugate heat transfer between a solid and a multiphase fluid. The first measure for higher quality simulations is the splitting of the single temperature field in the fluid region into separate liquid and vapor temperature fields. The second measure is the development of a new, more physical temperature boundary condition for conjugate heat transfer between a solid region and a multiphase fluid, based on experimental results, theoretical models and theoretical considerations. In interface cells, the vapor phase is excluded from the conjugate heat transfer because only heat transfer to the liquid phase occurs resp. dominates. Additionally, the conjugate heat transfer between solid and liquid in the interface cells is performed with virtual subcells, depending on the respective volume fraction of the liquid phase. This new approach (we name it distinctive approach) is successfully validated for energy conservation, and stability issues are discussed for the first time. Significant differences to simulations with averaged properties are observed due to the (now) physically correct modeling of conjugate heat transfer. In our boiling cases, the more accurate numerical simulations lead to considerably larger bubble growth rates. Higher quality simulations are also expected for nearly all applications, where there is a three-phase contact line, be it vapor bubbles in nucleate boiling or droplets impacting on a heated surface.

流体体积(VOF)法通常用于核沸腾或液滴蒸发等相变现象的数值模拟。标准 VOF 方法的一个关键问题是界面单元中液体和蒸汽属性的平均化,这会导致与固体壁的非物理共轭传热。因此,我们的目标是建立固体与多相流体之间共轭传热的物理模型。提高模拟质量的第一项措施是将流体区域的单一温度场拆分为独立的液体和蒸汽温度场。第二项措施是在实验结果、理论模型和理论考虑的基础上,为固体区域和多相流体之间的共轭传热开发一种新的、更具物理性的温度边界条件。在界面单元中,气相被排除在共轭传热之外,因为只有对液相的传热才会发生。此外,界面电池中固体和液体之间的共轭传热是通过虚拟子电池进行的,这取决于液相各自的体积分数。这种新方法(我们将其命名为独特方法)成功地验证了能量守恒,并首次讨论了稳定性问题。由于(现在)对共轭传热进行了物理上正确的建模,因此可以观察到与平均特性模拟的显著差异。在我们的沸腾案例中,更精确的数值模拟导致了更大的气泡增长率。在几乎所有存在三相接触线的应用中,无论是成核沸腾中的蒸汽气泡还是撞击加热表面的液滴,都有望获得更高质量的模拟结果。
{"title":"Physical modeling of conjugate heat transfer for multiregion and multiphase systems with the Volume-of-Fluid method","authors":"Johannes Kind, Axel Sielaff, Peter Stephan","doi":"10.1007/s00366-024-02051-6","DOIUrl":"https://doi.org/10.1007/s00366-024-02051-6","url":null,"abstract":"<p>The Volume-of-Fluid (VOF) method is commonly used for numerical simulations of phase change phenomena, such as nucleate boiling or droplet evaporation. A key issue with the standard VOF method is the averaging of the liquid and vapor properties in interface cells, which causes non-physical conjugate heat transfer with a solid wall. Therefore, we aim at a physical model for conjugate heat transfer between a solid and a multiphase fluid. The first measure for higher quality simulations is the splitting of the single temperature field in the fluid region into separate liquid and vapor temperature fields. The second measure is the development of a new, more physical temperature boundary condition for conjugate heat transfer between a solid region and a multiphase fluid, based on experimental results, theoretical models and theoretical considerations. In interface cells, the vapor phase is excluded from the conjugate heat transfer because only heat transfer to the liquid phase occurs resp. dominates. Additionally, the conjugate heat transfer between solid and liquid in the interface cells is performed with virtual subcells, depending on the respective volume fraction of the liquid phase. This new approach (we name it <i>distinctive approach</i>) is successfully validated for energy conservation, and stability issues are discussed for the first time. Significant differences to simulations with averaged properties are observed due to the (now) physically correct modeling of conjugate heat transfer. In our boiling cases, the more accurate numerical simulations lead to considerably larger bubble growth rates. Higher quality simulations are also expected for nearly all applications, where there is a three-phase contact line, be it vapor bubbles in nucleate boiling or droplets impacting on a heated surface.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse Cauchy problem in the framework of an RBF-based meshless technique and trigonometric basis functions 基于 RBF 的无网格技术和三角基函数框架下的反考赫问题
IF 8.7 2区 工程技术 Q1 Mathematics Pub Date : 2024-08-27 DOI: 10.1007/s00366-024-02049-0
Farzaneh Safari, Yanjun Duan

The purpose of this paper is to point out that it is possible to evaluate the approximation solution of elliptic Partial differential equations (PDEs) on regular and irregular domains where no boundary conditions are defined on some part of the boundary domain. In the presence of trigonometric basis functions (TBFs), the backward substitution method (BSM) coupled with the radial basis functions neural network (RBFNN) is implemented very easily and works well. As a result, the approximation of the boundary conditions and the approximation of the PDE inside the solution domain is separated. The particular solution with an ungiven part of the inhomogeneous boundary condition is completely analyzed by the RBFNN method, and the efficiency and accuracy of the developed algorithms are discussed.

本文旨在指出,在规则域和不规则域上评估椭圆偏微分方程(PDEs)的近似解是有可能的,因为在边界域的某些部分没有定义边界条件。在存在三角基函数 (TBF) 的情况下,与径向基函数神经网络 (RBFNN) 相结合的后向替代法 (BSM) 可以非常容易地实现,而且效果良好。因此,边界条件的近似和求解域内 PDE 的近似是分开的。RBFNN 方法完全分析了不均匀边界条件未给定部分的特殊解,并讨论了所开发算法的效率和准确性。
{"title":"Inverse Cauchy problem in the framework of an RBF-based meshless technique and trigonometric basis functions","authors":"Farzaneh Safari, Yanjun Duan","doi":"10.1007/s00366-024-02049-0","DOIUrl":"https://doi.org/10.1007/s00366-024-02049-0","url":null,"abstract":"<p>The purpose of this paper is to point out that it is possible to evaluate the approximation solution of elliptic Partial differential equations (PDEs) on regular and irregular domains where no boundary conditions are defined on some part of the boundary domain. In the presence of trigonometric basis functions (TBFs), the backward substitution method (BSM) coupled with the radial basis functions neural network (RBFNN) is implemented very easily and works well. As a result, the approximation of the boundary conditions and the approximation of the PDE inside the solution domain is separated. The particular solution with an ungiven part of the inhomogeneous boundary condition is completely analyzed by the RBFNN method, and the efficiency and accuracy of the developed algorithms are discussed.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Engineering with Computers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1