Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2024-04-29 DOI:10.1021/acsinfecdis.4c00082
Mansi Tanwar, Anamika Singh, Tej Pal Singh, Sujata Sharma* and Pradeep Sharma*, 
{"title":"Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis","authors":"Mansi Tanwar,&nbsp;Anamika Singh,&nbsp;Tej Pal Singh,&nbsp;Sujata Sharma* and Pradeep Sharma*,&nbsp;","doi":"10.1021/acsinfecdis.4c00082","DOIUrl":null,"url":null,"abstract":"<p >Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood–brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00082","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood–brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能辅助下的霉菌病毒性因素和治疗策略综述
粘孢子菌病是一种罕见但致命的真菌感染,在 COVID-19 大流行期间成为一种流行病。病例增加(COVID-19 相关粘孢子菌病,CAM)的原因是过度使用类固醇和抗生素、医院卫生条件差以及环境拥挤。主要诱因包括糖尿病和免疫系统衰弱。CAM的主要表现形式--皮肤、肺部和最致命的鼻脑--以及播散性感染将死亡率提高到85%。与手术和脂质体两性霉素 B(具有多种长期不良反应)等标准疗法相比,小分子抑制剂具有潜在的中枢神经系统穿透力、靶点多样、用药简便等优势,而且由于其体积小,能够通过磷脂膜的被动扩散穿越血脑屏障,因此成为近期研究的重点。粘孢子虫病的适应性和多变性得益于多种毒力因子,使病原体能够对各种环境压力做出动态反应。粘孢子虫病具有血管侵袭性,在免疫力低下的人群中很容易滋生,要针对这种机会性极强的病原体制定有效的治疗干预措施,就必须全面了解这些毒力机制。因此,本综述描述了粘孢子虫病的主要毒力因子、它在具有挑战性的宿主环境中存活的机制,以及目前在开发针对这些因子的小分子抑制剂方面取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy. Enhancing the Intrinsic Antiplasmodial Activity and Improving the Stability and Selectivity of a Tunable Peptide Scaffold Derived from Human Platelet Factor 4. Amino Acid-Conjugated Polymer-Silver Bromide Nanocomposites for Eradicating Polymicrobial Biofilms and Treating Burn Wound Infections. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. Acknowledgment of "Star Reviewers" over the Past Decade for ACS Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1