Season combinatorial intervention predictions with Salt & Peper

Thomas Gaudelet, Alice Del Vecchio, Eli M Carrami, Juliana Cudini, Chantriolnt-Andreas Kapourani, Caroline Uhler, Lindsay Edwards
{"title":"Season combinatorial intervention predictions with Salt & Peper","authors":"Thomas Gaudelet, Alice Del Vecchio, Eli M Carrami, Juliana Cudini, Chantriolnt-Andreas Kapourani, Caroline Uhler, Lindsay Edwards","doi":"arxiv-2404.16907","DOIUrl":null,"url":null,"abstract":"Interventions play a pivotal role in the study of complex biological systems.\nIn drug discovery, genetic interventions (such as CRISPR base editing) have\nbecome central to both identifying potential therapeutic targets and\nunderstanding a drug's mechanism of action. With the advancement of CRISPR and\nthe proliferation of genome-scale analyses such as transcriptomics, a new\nchallenge is to navigate the vast combinatorial space of concurrent genetic\ninterventions. Addressing this, our work concentrates on estimating the effects\nof pairwise genetic combinations on the cellular transcriptome. We introduce\ntwo novel contributions: Salt, a biologically-inspired baseline that posits the\nmostly additive nature of combination effects, and Peper, a deep learning model\nthat extends Salt's additive assumption to achieve unprecedented accuracy. Our\ncomprehensive comparison against existing state-of-the-art methods, grounded in\ndiverse metrics, and our out-of-distribution analysis highlight the limitations\nof current models in realistic settings. This analysis underscores the\nnecessity for improved modelling techniques and data acquisition strategies,\npaving the way for more effective exploration of genetic intervention effects.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interventions play a pivotal role in the study of complex biological systems. In drug discovery, genetic interventions (such as CRISPR base editing) have become central to both identifying potential therapeutic targets and understanding a drug's mechanism of action. With the advancement of CRISPR and the proliferation of genome-scale analyses such as transcriptomics, a new challenge is to navigate the vast combinatorial space of concurrent genetic interventions. Addressing this, our work concentrates on estimating the effects of pairwise genetic combinations on the cellular transcriptome. We introduce two novel contributions: Salt, a biologically-inspired baseline that posits the mostly additive nature of combination effects, and Peper, a deep learning model that extends Salt's additive assumption to achieve unprecedented accuracy. Our comprehensive comparison against existing state-of-the-art methods, grounded in diverse metrics, and our out-of-distribution analysis highlight the limitations of current models in realistic settings. This analysis underscores the necessity for improved modelling techniques and data acquisition strategies, paving the way for more effective exploration of genetic intervention effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Salt & Peper 进行季节组合干预预测
在药物发现方面,基因干预(如 CRISPR 碱基编辑)已成为确定潜在治疗靶点和了解药物作用机制的核心。随着CRISPR技术的发展和转录组学等基因组规模分析的普及,如何在同时进行的基因干预的巨大组合空间中进行导航成为了新的挑战。为了解决这个问题,我们的工作集中于估算成对遗传组合对细胞转录组的影响。我们做出了两项新贡献:盐"(Salt)和 "佩珀"(Peper)。"盐 "是一种受生物学启发的基线,它认为组合效应的本质是相加的;而 "佩珀 "则是一种深度学习模型,它扩展了 "盐 "的相加假设,实现了前所未有的准确性。我们与现有的最先进方法进行了全面比较,采用了多种指标,并进行了分布外分析,突出显示了当前模型在现实环境中的局限性。这一分析强调了改进建模技术和数据采集策略的必要性,为更有效地探索遗传干预效应铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1