Depolarization at the Electrodeposition of the Negative Component of Eutectic Alloys

IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Russian Journal of Electrochemistry Pub Date : 2024-04-27 DOI:10.1134/S102319352402006X
Yu. D. Gamburg
{"title":"Depolarization at the Electrodeposition of the Negative Component of Eutectic Alloys","authors":"Yu. D. Gamburg","doi":"10.1134/S102319352402006X","DOIUrl":null,"url":null,"abstract":"<p>At the electrochemical deposition of alloys various phenomena are observed that lead to changes in the kinetics and thermodynamics of the processes. In particular, as a result of changing in the nature of the electrode surface, both the exchange current densities and the transfer coefficients of each of the components changed. Further, during the formation of solid solutions, the equilibrium potentials of the components change due to the non-zero enthalpy and entropy of mixing. At the deposition of eutectic-type alloys (that is, a mixture of grains of individual components), each of the metals does not deposit on the entire electrode surface but only on its own surface. In the latter case, there is a change in the diffusion pattern of the components as compared to the deposition of individual metals: it remains unchanged in the outer part of the diffusion layer but there is a condensation of the diffusion fields of the components near the surface, similar to the case of diffusion to the matrix of microelectrodes or to individual nuclei of a new phase. This also leads to a change in the diffusion part of the overpotential of the components’ deposition. The diffusion of ions of the discharging negative component of an alloy representing a mechanical mixture of the metals’ A and B grains to the grain surface of this component in the model of a partially blocked electrode is considered. At a constant potential, the local current density of the component is shown to increase as a result of the diffusion acceleration. The magnitude of the relative increase in the current and the corresponding magnitude of apparent depolarization are found, as compared between the deposition of an individual metal and the codeposition of the same component into an alloy.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S102319352402006X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

At the electrochemical deposition of alloys various phenomena are observed that lead to changes in the kinetics and thermodynamics of the processes. In particular, as a result of changing in the nature of the electrode surface, both the exchange current densities and the transfer coefficients of each of the components changed. Further, during the formation of solid solutions, the equilibrium potentials of the components change due to the non-zero enthalpy and entropy of mixing. At the deposition of eutectic-type alloys (that is, a mixture of grains of individual components), each of the metals does not deposit on the entire electrode surface but only on its own surface. In the latter case, there is a change in the diffusion pattern of the components as compared to the deposition of individual metals: it remains unchanged in the outer part of the diffusion layer but there is a condensation of the diffusion fields of the components near the surface, similar to the case of diffusion to the matrix of microelectrodes or to individual nuclei of a new phase. This also leads to a change in the diffusion part of the overpotential of the components’ deposition. The diffusion of ions of the discharging negative component of an alloy representing a mechanical mixture of the metals’ A and B grains to the grain surface of this component in the model of a partially blocked electrode is considered. At a constant potential, the local current density of the component is shown to increase as a result of the diffusion acceleration. The magnitude of the relative increase in the current and the corresponding magnitude of apparent depolarization are found, as compared between the deposition of an individual metal and the codeposition of the same component into an alloy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共晶合金负极成分电沉积时的去极化现象
摘要 在合金的电化学沉积过程中,观察到了各种导致过程的动力学和热力学发生变化的现象。特别是,由于电极表面性质的改变,各组分的交换电流密度和传递系数都发生了变化。此外,在形成固溶体的过程中,由于混合焓和混合熵不为零,各组分的平衡电位也发生了变化。在共晶型合金(即各组分晶粒的混合物)的沉积过程中,每种金属都不会沉积在整个电极表面,而只会沉积在自己的表面。在后一种情况下,与单个金属的沉积相比,各成分的扩散模式发生了变化:扩散层的外部保持不变,但在表面附近各成分的扩散场发生了凝聚,这与向微电极基体或新相的单个晶核扩散的情况类似。这也会导致成分沉积过电势的扩散部分发生变化。在部分堵塞的电极模型中,考虑了代表金属 A 晶粒和 B 晶粒机械混合物的合金放电负成分的离子向该成分晶粒表面的扩散。在恒定电位下,由于扩散加速,该成分的局部电流密度会增加。通过比较单个金属的沉积和同一组分在合金中的共沉积,可以发现电流相对增加的幅度和表观去极化的相应幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
期刊最新文献
Electrochemical Synthesis of a Composite of Few-Layer Graphene Structures with PdNi-Alloy Nanoparticles and Its Electrocatalytic Activity in the Methanol Oxidation Reaction Numerical Modeling of Electrolyte-Supported Button Solid Oxide Direct Carbon Fuel Cell Based on Boudouard Reaction Electrocatalysts Based on Platinized Titanium Dioxide Doped with Ruthenium for Hydrogen and Carbon-Monoxide Potentiometric Sensors A High Discharge Power Density Single Cell of Hydrogen–Vanadium Flow Battery Studies on Porous Nanostructured Palladium–Cobalt–Silica as Heterogeneous Catalysts for Oxygen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1