V V Tretiakov, K S Kravtsov, A N Klimov and S P Kulik
{"title":"A multi-mode free-space delay interferometer with no refractive compensation elements for phase-encoded QKD protocols","authors":"V V Tretiakov, K S Kravtsov, A N Klimov and S P Kulik","doi":"10.1088/1612-202x/ad3a56","DOIUrl":null,"url":null,"abstract":"We demonstrate a compensation-free approach to the realization of multi-mode delay interferometers, mainly for use in phase-encoded quantum key distribution (QKD). High interference visibility of spatially multi-mode beams in unbalanced Michelson or Mach–Zehnder interferometers with a relatively wide range of delays is achieved by the appropriate choice of the transverse size of the beam. We provide a simple theoretical model that gives a direct connection between the visibility of interference, the delay and the beam parameters. The performed experimental study confirms our theoretical findings and demonstrates measured visibility of up to 0.95 for a delay of 2 ns. Our approach’s simplicity and robust performance make it a practical choice for the implementation of QKD systems, where a quantum signal is received over a multi-mode fiber. The important application of such a configuration is an intermodal QKD system, where the free-space atmospheric communication channel is coupled into a span of the multi-mode fiber, delivering the spatially distorted beam to the remote receiver with minimal coupling loss.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3a56","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a compensation-free approach to the realization of multi-mode delay interferometers, mainly for use in phase-encoded quantum key distribution (QKD). High interference visibility of spatially multi-mode beams in unbalanced Michelson or Mach–Zehnder interferometers with a relatively wide range of delays is achieved by the appropriate choice of the transverse size of the beam. We provide a simple theoretical model that gives a direct connection between the visibility of interference, the delay and the beam parameters. The performed experimental study confirms our theoretical findings and demonstrates measured visibility of up to 0.95 for a delay of 2 ns. Our approach’s simplicity and robust performance make it a practical choice for the implementation of QKD systems, where a quantum signal is received over a multi-mode fiber. The important application of such a configuration is an intermodal QKD system, where the free-space atmospheric communication channel is coupled into a span of the multi-mode fiber, delivering the spatially distorted beam to the remote receiver with minimal coupling loss.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.