{"title":"imply: improving cell-type deconvolution accuracy using personalized reference profiles","authors":"Guanqun Meng, Yue Pan, Wen Tang, Lijun Zhang, Ying Cui, Fredrick R. Schumacher, Ming Wang, Rui Wang, Sijia He, Jeffrey Krischer, Qian Li, Hao Feng","doi":"10.1186/s13073-024-01338-z","DOIUrl":null,"url":null,"abstract":"Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson’s disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01338-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson’s disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.