imply: improving cell-type deconvolution accuracy using personalized reference profiles

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY Genome Medicine Pub Date : 2024-04-29 DOI:10.1186/s13073-024-01338-z
Guanqun Meng, Yue Pan, Wen Tang, Lijun Zhang, Ying Cui, Fredrick R. Schumacher, Ming Wang, Rui Wang, Sijia He, Jeffrey Krischer, Qian Li, Hao Feng
{"title":"imply: improving cell-type deconvolution accuracy using personalized reference profiles","authors":"Guanqun Meng, Yue Pan, Wen Tang, Lijun Zhang, Ying Cui, Fredrick R. Schumacher, Ming Wang, Rui Wang, Sijia He, Jeffrey Krischer, Qian Li, Hao Feng","doi":"10.1186/s13073-024-01338-z","DOIUrl":null,"url":null,"abstract":"Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson’s disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"133 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01338-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson’s disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暗示:利用个性化参考图谱提高细胞类型解卷积的准确性
利用计算工具,可以对大容量转录组学进行解卷积,以估计组成细胞类型的丰度。然而,现有的解卷积方法是以假设整个研究人群都由一个参考面板提供服务为条件的,忽略了人与人之间的异质性。在这里,我们提出了一种利用个性化参考面板来解卷积细胞类型比例的新型算法 imply。模拟研究表明,与现有方法相比,偏差有所减少。对纵向联盟的真实数据分析显示,细胞类型比例的差异与 1 型糖尿病和帕金森病的几种疾病表型有关。imply 可通过 R/Bioconductor 软件包 ISLET 获得,网址是 https://bioconductor.org/packages/ISLET/ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
期刊最新文献
HGVS Nomenclature 2024: improvements to community engagement, usability, and computability. SARS-CoV-2 introductions to the island of Ireland: a phylogenetic and geospatiotemporal study of infection dynamics. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: a meta-analysis of 23 military and civilian cohorts. Patterns of genomic instability in > 2000 patients with ovarian cancer across six clinical trials evaluating olaparib. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1