Intricate interplay of CRISPR-Cas systems, anti-CRISPR proteins, and antimicrobial resistance genes in a globally successful multi-drug resistant Klebsiella pneumoniae clone.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY Genome Medicine Pub Date : 2025-01-30 DOI:10.1186/s13073-025-01428-6
Jianping Jiang, Astrid V Cienfuegos-Galletd, Tengfei Long, Gisele Peirano, Tingyu Chu, Johann D D Pitout, Barry N Kreiswirth, Liang Chen
{"title":"Intricate interplay of CRISPR-Cas systems, anti-CRISPR proteins, and antimicrobial resistance genes in a globally successful multi-drug resistant Klebsiella pneumoniae clone.","authors":"Jianping Jiang, Astrid V Cienfuegos-Galletd, Tengfei Long, Gisele Peirano, Tingyu Chu, Johann D D Pitout, Barry N Kreiswirth, Liang Chen","doi":"10.1186/s13073-025-01428-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Klebsiella pneumoniae is one of the most prevalent pathogens responsible for multiple infections in healthcare settings and the community. K. pneumoniae CG147, primarily including ST147 (the founder ST), ST273, and ST392, is one of the most globally successful MDR clone linked to various carbapenemases.</p><p><strong>Methods: </strong>One hundred and one CG147 strains were sequenced and additional 911 publicly available CG147 genome sequences were included for analysis. The molecular epidemiology, population structure, and time phylogeny were investigated. The virulome, resistome, and mobilome were analyzed, and the recombination in the capsular region was studied. The CRISPR-Cas and anti-CRISPR were identified. The interplay between CRISPR-Cas, anti-CRISPR, and carbapenemase-encoding plasmids was analyzed and experimentally validated.</p><p><strong>Results: </strong>We analyzed 1012 global CG147 genomes, with 80.4% encoding at least one carbapenemase (NDM [529/1012, 52.3%], OXA-48-like [182/1012, 17.7%], and KPC [105/1012, 10.4%]). Surprisingly, almost all CG147 strains (99.7%, 1009/1,012) harbor a chromosomal type I-E CRISPR-Cas system, with 41.8% (423/1012) containing an additional plasmid-borne type IV-A3 CRISPR-Cas system, and both target IncF plasmids, e.g., the most prevalent KPC-encoding pKpQIL-like plasmids. We found the presence of IV-A3 CRISPR-Cas system showed a negative correlation with the presence of KPC. Interestingly, a prophage-encoding anti-CRISPR AcrIE8.1 and a plasmid-borne anti-CRISPR AcrIE9.2 were detected in 40.1% (406/1012) and 54.2% (548/1012) of strains, respectively, which displayed positive correlations with the presence of a carbapenemase. Plasmid transfer experiments confirmed that the I-E and IV-A3 CRISPR-Cas systems significantly decreased (p < 0.001) KPC-encoding pKpQIL plasmid conjugation frequencies, while the AcrIE8.1 and AcrIE9.2 significantly increased (p < 0.001) pKpQIL conjugation frequencies and protected plasmids from elimination by CRISPR-Cas I-E system.</p><p><strong>Conclusions: </strong>Our results indicated a complex interplay between CRISPR-Cas, anti-CRISPR, and mobile genetic elements that shape the evolution of CG147. Our findings advance the understanding of multi-drug resistance mechanisms and will aid in preventing the emergence of future MDR clones.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"9"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01428-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Klebsiella pneumoniae is one of the most prevalent pathogens responsible for multiple infections in healthcare settings and the community. K. pneumoniae CG147, primarily including ST147 (the founder ST), ST273, and ST392, is one of the most globally successful MDR clone linked to various carbapenemases.

Methods: One hundred and one CG147 strains were sequenced and additional 911 publicly available CG147 genome sequences were included for analysis. The molecular epidemiology, population structure, and time phylogeny were investigated. The virulome, resistome, and mobilome were analyzed, and the recombination in the capsular region was studied. The CRISPR-Cas and anti-CRISPR were identified. The interplay between CRISPR-Cas, anti-CRISPR, and carbapenemase-encoding plasmids was analyzed and experimentally validated.

Results: We analyzed 1012 global CG147 genomes, with 80.4% encoding at least one carbapenemase (NDM [529/1012, 52.3%], OXA-48-like [182/1012, 17.7%], and KPC [105/1012, 10.4%]). Surprisingly, almost all CG147 strains (99.7%, 1009/1,012) harbor a chromosomal type I-E CRISPR-Cas system, with 41.8% (423/1012) containing an additional plasmid-borne type IV-A3 CRISPR-Cas system, and both target IncF plasmids, e.g., the most prevalent KPC-encoding pKpQIL-like plasmids. We found the presence of IV-A3 CRISPR-Cas system showed a negative correlation with the presence of KPC. Interestingly, a prophage-encoding anti-CRISPR AcrIE8.1 and a plasmid-borne anti-CRISPR AcrIE9.2 were detected in 40.1% (406/1012) and 54.2% (548/1012) of strains, respectively, which displayed positive correlations with the presence of a carbapenemase. Plasmid transfer experiments confirmed that the I-E and IV-A3 CRISPR-Cas systems significantly decreased (p < 0.001) KPC-encoding pKpQIL plasmid conjugation frequencies, while the AcrIE8.1 and AcrIE9.2 significantly increased (p < 0.001) pKpQIL conjugation frequencies and protected plasmids from elimination by CRISPR-Cas I-E system.

Conclusions: Our results indicated a complex interplay between CRISPR-Cas, anti-CRISPR, and mobile genetic elements that shape the evolution of CG147. Our findings advance the understanding of multi-drug resistance mechanisms and will aid in preventing the emergence of future MDR clones.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
期刊最新文献
Intricate interplay of CRISPR-Cas systems, anti-CRISPR proteins, and antimicrobial resistance genes in a globally successful multi-drug resistant Klebsiella pneumoniae clone. A new method for detecting mixed Mycobacterium tuberculosis infection and reconstructing constituent strains provides insights into transmission. Integrating pharmacogenomics and cheminformatics with diverse disease phenotypes for cell type-guided drug discovery. Nanopore-based random genomic sampling for intraoperative molecular diagnosis. Meta-analyses of mouse and human prostate single-cell transcriptomes reveal widespread epithelial plasticity in tissue regression, regeneration, and cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1