M. Dareini , S.R. Ghorbani , H. Arabi , S. Daqiqeh Rezaei
{"title":"Application of circuit model for gap-plasmon nanodisk resonators","authors":"M. Dareini , S.R. Ghorbani , H. Arabi , S. Daqiqeh Rezaei","doi":"10.1016/j.photonics.2024.101264","DOIUrl":null,"url":null,"abstract":"<div><p>The design of plasmonic metasurfaces is often based on solving the Maxwell electromagnetic equations, which can be a time-consuming and expensive process considering many geometrical parameters that can limit design flexibility. To speed up the design flow, a model based on the classical transmission line theory is presented. The proposed equivalent circuit model can predict the plasmon resonance wavelength based on various geometrical parameters including dielectric thickness and disk diameter. In addition, unlike other reported circuit models, the developed model considers the nanostructure array pitch size, which is crucial in metasurface design. Comparison between the results obtained from circuit model and full wavelength simulation showed that the circuit parameters accurately determine the response of the structure. Finally, as a metasurface design demonstration, we utilized our model to simulate aluminum-based gap-plasmon nanodisk arrays for optimizing their optical response to maximize structural color saturation.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000397","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The design of plasmonic metasurfaces is often based on solving the Maxwell electromagnetic equations, which can be a time-consuming and expensive process considering many geometrical parameters that can limit design flexibility. To speed up the design flow, a model based on the classical transmission line theory is presented. The proposed equivalent circuit model can predict the plasmon resonance wavelength based on various geometrical parameters including dielectric thickness and disk diameter. In addition, unlike other reported circuit models, the developed model considers the nanostructure array pitch size, which is crucial in metasurface design. Comparison between the results obtained from circuit model and full wavelength simulation showed that the circuit parameters accurately determine the response of the structure. Finally, as a metasurface design demonstration, we utilized our model to simulate aluminum-based gap-plasmon nanodisk arrays for optimizing their optical response to maximize structural color saturation.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.