A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-04-05 DOI:10.1109/JMMCT.2024.3385451
Yanan Liu;Hongliang Li;Jian-Ming Jin
{"title":"A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning","authors":"Yanan Liu;Hongliang Li;Jian-Ming Jin","doi":"10.1109/JMMCT.2024.3385451","DOIUrl":null,"url":null,"abstract":"In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"157-165"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10493126/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物理信息机器学习的混合电磁优化方法
在本文中,我们提出了一种基于遗传算法(GA)和梯度优化(grad-opt)混合的优化方法,并通过物理信息机器学习模型加以促进。在所提出的方法中,缓慢但全局的遗传算法被用作预筛选工具,为快速但局部的梯度优化提供良好的初始值。我们引入了一个稳健的指标来衡量作为起点的设计的优劣,并使用一组控制参数来微调优化动态。我们利用带有特征值分析扩展的机器学习(ML w/AEE)模型将两部分无缝集成,并通过加速 GA 中的前向评估和 grad-opt 中的梯度计算来加速优化过程。我们采用分而治之的策略进一步提高建模效率,加快设计过程,并建议使用融合模块来实现端到端的梯度传播。我们还列举了两个数值示例,以说明与传统方法相比,所提方法的稳健性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1