On the factor ambiguity of MCR problems for blockwise incomplete data sets

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-04-27 DOI:10.1016/j.chemolab.2024.105134
Martina Beese , Tomass Andersons , Mathias Sawall , Cyril Ruckebusch , Adrián Gómez-Sánchez , Robert Francke , Adrian Prudlik , Robert Franke , Klaus Neymeyr
{"title":"On the factor ambiguity of MCR problems for blockwise incomplete data sets","authors":"Martina Beese ,&nbsp;Tomass Andersons ,&nbsp;Mathias Sawall ,&nbsp;Cyril Ruckebusch ,&nbsp;Adrián Gómez-Sánchez ,&nbsp;Robert Francke ,&nbsp;Adrian Prudlik ,&nbsp;Robert Franke ,&nbsp;Klaus Neymeyr","doi":"10.1016/j.chemolab.2024.105134","DOIUrl":null,"url":null,"abstract":"<div><p>Multivariate curve resolution (MCR) methods are sometimes faced with missing or erroneous data, e.g., due to sensor saturation. In some cases, an estimation of the missing data is possible, but often MCR works with the largest submatrix without missing entries. This ignores all rows and columns of the data matrix that contain missing values. A successful approach to deal with incomplete data multisets has been proposed by Alier and Tauler (2013), but it does not include a factor ambiguity analysis. Here, the missing data problem is addressed in combination with a factor ambiguity analysis. An approach is presented that minimizes the factor ambiguity by extracting a maximum of spectral information even from incomplete rows and columns of the spectral data matrix. The method requires a high signal-to-noise ratio. Applications are presented for UV/Vis and HSI data.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"249 ","pages":"Article 105134"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169743924000741/pdfft?md5=bb7d17fc695f88d0275f3839df0eb621&pid=1-s2.0-S0169743924000741-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000741","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate curve resolution (MCR) methods are sometimes faced with missing or erroneous data, e.g., due to sensor saturation. In some cases, an estimation of the missing data is possible, but often MCR works with the largest submatrix without missing entries. This ignores all rows and columns of the data matrix that contain missing values. A successful approach to deal with incomplete data multisets has been proposed by Alier and Tauler (2013), but it does not include a factor ambiguity analysis. Here, the missing data problem is addressed in combination with a factor ambiguity analysis. An approach is presented that minimizes the factor ambiguity by extracting a maximum of spectral information even from incomplete rows and columns of the spectral data matrix. The method requires a high signal-to-noise ratio. Applications are presented for UV/Vis and HSI data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论块状不完整数据集 MCR 问题的因子模糊性
多变量曲线解析(MCR)方法有时会遇到数据缺失或错误的情况,例如由于传感器饱和。在某些情况下,可以对缺失数据进行估算,但 MCR 通常使用最大的无缺失条目的子矩阵。这就忽略了数据矩阵中包含缺失值的所有行和列。Alier 和 Tauler(2013 年)提出了一种处理不完整数据多集的成功方法,但其中不包括因子模糊性分析。在这里,缺失数据问题将结合因子模糊性分析来解决。本文提出了一种方法,即使从光谱数据矩阵不完整的行和列中提取最大的光谱信息,也能最大限度地减少因子模糊性。该方法需要较高的信噪比。介绍了 UV/Vis 和 HSI 数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1