Bihter Das, Huseyin Alperen Dagdogen, Muhammed Onur Kaya, Ozkan Tuncel, Muhammed Samet Akgul, Resul Das
{"title":"GAINET: Enhancing drug–drug interaction predictions through graph neural networks and attention mechanisms","authors":"Bihter Das, Huseyin Alperen Dagdogen, Muhammed Onur Kaya, Ozkan Tuncel, Muhammed Samet Akgul, Resul Das","doi":"10.1016/j.chemolab.2025.105337","DOIUrl":null,"url":null,"abstract":"<div><div>Drug–drug interactions (DDIs) are a significant challenge in modern healthcare, especially in polypharmacy, where patients are given more than one drug at the same time. Accurate prediction of DDIs plays an important role in reducing adverse effects and improving recovery in patients. In this study, we propose GAINET, a derivative of the graph-based neural network model enhanced with attention mechanisms, to accurately improve the prediction of drug–drug interactions. The model effectively learns interaction models by focusing on critical features in drug structures and their interactions with each other through molecular graph representations. For the performance evaluation of GAINET, which is trained on the DrugBank dataset containing 191,870 DDI examples, basic metrics such as AUC-ROC, F1 score, precision and recall are used. The obtained accuracy of 0.9050, F1 score of 0.9096 and AUC-ROC of 0.9505 indicate that GAINET outperforms many state-of-the-art models and has good generalization ability even on previously untested data. Moreover, the molecular attention mechanism enables interpretable predictions by highlighting the interaction-specific molecular substructures. All these findings indicate that GAINET, our proposed model for DDI prediction, can serve as a valuable and useful tool and advance the development of reliable pharmacological treatments.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"259 ","pages":"Article 105337"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392500022X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug–drug interactions (DDIs) are a significant challenge in modern healthcare, especially in polypharmacy, where patients are given more than one drug at the same time. Accurate prediction of DDIs plays an important role in reducing adverse effects and improving recovery in patients. In this study, we propose GAINET, a derivative of the graph-based neural network model enhanced with attention mechanisms, to accurately improve the prediction of drug–drug interactions. The model effectively learns interaction models by focusing on critical features in drug structures and their interactions with each other through molecular graph representations. For the performance evaluation of GAINET, which is trained on the DrugBank dataset containing 191,870 DDI examples, basic metrics such as AUC-ROC, F1 score, precision and recall are used. The obtained accuracy of 0.9050, F1 score of 0.9096 and AUC-ROC of 0.9505 indicate that GAINET outperforms many state-of-the-art models and has good generalization ability even on previously untested data. Moreover, the molecular attention mechanism enables interpretable predictions by highlighting the interaction-specific molecular substructures. All these findings indicate that GAINET, our proposed model for DDI prediction, can serve as a valuable and useful tool and advance the development of reliable pharmacological treatments.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.