{"title":"HDAC1/2 and HDAC3 play distinct roles in controlling adult Meibomian gland homeostasis","authors":"Xuming Zhu , Mingang Xu , Sarah E. Millar","doi":"10.1016/j.jtos.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To investigate the roles of HDAC1/2 and HDAC3 in adult Meibomian gland (MG) homeostasis.</p></div><div><h3>Methods</h3><p>HDAC1/2 or HDAC3 were inducibly deleted in MG epithelial cells of adult mice. The morphology of MG was examined. Proliferation, apoptosis, and expression of MG acinus and duct marker genes, meibocyte differentiation genes, and HDAC target genes, were analyzed via immunofluorescence, TUNEL assay, and RNA in situ hybridization.</p></div><div><h3>Results</h3><p>Co-deletion of HDAC1/2 in MG epithelium caused gradual loss of acini and formation of cyst-like structures in the central duct. These phenotypes required homozygous deletion of both HDAC1 and HDAC2, indicating that they function redundantly in the adult MG. Short-term deletion of HDAC1/2 in MG epithelium had little effect on meibocyte maturation but caused decreased proliferation of acinar basal cells, excessive DNA damage, ectopic apoptosis, and increased p53 acetylation and <em>p16</em> expression in the MG. By contrast, HDAC3 deletion in MG epithelium caused dilation of central duct, atrophy of acini, defective meibocyte maturation, increased acinar basal cell proliferation, and ectopic apoptosis and DNA damage. Levels of p53 acetylation and p21 expression were elevated in HDAC3-deficient MGs, while the expression of the differentiation regulator PPARγ and the differentiation markers PLIN2 and FASN was downregulated.</p></div><div><h3>Conclusions</h3><p>HDAC1 and HDAC2 function redundantly in adult Meibomian gland epithelial progenitor cells and are essential for their proliferation and survival, but not for acinar differentiation, while HDAC3 is required to limit acinar progenitor cell proliferation and permit differentiation. HDAC1/2 and HDAC3 have partially overlapping roles in maintaining survival of MG cells.</p></div>","PeriodicalId":54691,"journal":{"name":"Ocular Surface","volume":"33 ","pages":"Pages 39-49"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Surface","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154201242400051X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To investigate the roles of HDAC1/2 and HDAC3 in adult Meibomian gland (MG) homeostasis.
Methods
HDAC1/2 or HDAC3 were inducibly deleted in MG epithelial cells of adult mice. The morphology of MG was examined. Proliferation, apoptosis, and expression of MG acinus and duct marker genes, meibocyte differentiation genes, and HDAC target genes, were analyzed via immunofluorescence, TUNEL assay, and RNA in situ hybridization.
Results
Co-deletion of HDAC1/2 in MG epithelium caused gradual loss of acini and formation of cyst-like structures in the central duct. These phenotypes required homozygous deletion of both HDAC1 and HDAC2, indicating that they function redundantly in the adult MG. Short-term deletion of HDAC1/2 in MG epithelium had little effect on meibocyte maturation but caused decreased proliferation of acinar basal cells, excessive DNA damage, ectopic apoptosis, and increased p53 acetylation and p16 expression in the MG. By contrast, HDAC3 deletion in MG epithelium caused dilation of central duct, atrophy of acini, defective meibocyte maturation, increased acinar basal cell proliferation, and ectopic apoptosis and DNA damage. Levels of p53 acetylation and p21 expression were elevated in HDAC3-deficient MGs, while the expression of the differentiation regulator PPARγ and the differentiation markers PLIN2 and FASN was downregulated.
Conclusions
HDAC1 and HDAC2 function redundantly in adult Meibomian gland epithelial progenitor cells and are essential for their proliferation and survival, but not for acinar differentiation, while HDAC3 is required to limit acinar progenitor cell proliferation and permit differentiation. HDAC1/2 and HDAC3 have partially overlapping roles in maintaining survival of MG cells.
期刊介绍:
The Ocular Surface, a quarterly, a peer-reviewed journal, is an authoritative resource that integrates and interprets major findings in diverse fields related to the ocular surface, including ophthalmology, optometry, genetics, molecular biology, pharmacology, immunology, infectious disease, and epidemiology. Its critical review articles cover the most current knowledge on medical and surgical management of ocular surface pathology, new understandings of ocular surface physiology, the meaning of recent discoveries on how the ocular surface responds to injury and disease, and updates on drug and device development. The journal also publishes select original research reports and articles describing cutting-edge techniques and technology in the field.
Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.
Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center