Purpose
Clonal analysis is a feasible method to evaluate the status of stem/progenitor cells in epidermal or limbus investigations. This study aimed to evaluate the clonal growth potential of meibomian gland (MG) epithelial cells using clonal analysis.
Methods
Mouse and human MG tissues were isolated and cocultured with 3T3 feeder cells. Immunofluorescent staining of K14, K6a, and PPARγ on MG clones was applied. Holoclones, meroclones and paraclones were categorized based on clonal area. Triple staining and tile scans provided a comprehensive view of MG clone formation. MG ductal and acinar clones were cultured separately to compare stem/progenitor cell characteristics. We further evaluated an age-related MGD (ARMGD) mouse model along with two human MG samples of different ages using clonal analysis. Crystal violet staining was employed to assess clone formation efficiency (CFE).
Results
Both mouse and human MG epithelial cells formed clones on the feeder layers, which enlarged over time. The expression of K14, K6a, and PPARγ was decreased in differentiated clones during development. The CFE of holoclones and meroclones was approximately 1 ‰ in mouse MG clones and approximately 2.5 ‰ in holoclones and 5.6 ‰ in meroclones in human MG clones. The CFE of holoclones generated by ductal epithelial cells was significantly higher than did acinar clones. In the ARMGD mouse model and human samples, smaller clones, reduced CFE, and decreased K14+, K6a+, and PPARγ+ cells in MG clones were identified.
Conclusions
Clonal analysis effectively evaluates stem and progenitor cells in MGs, revealing deterioration in these cells under MGD conditions.