Generating periodic vortex pairs using flexible structures

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-04-30 DOI:10.1016/j.jfluidstructs.2024.104126
Gaurav Singh , Arahata Senapati , Arnab Atta , Rajaram Lakkaraju
{"title":"Generating periodic vortex pairs using flexible structures","authors":"Gaurav Singh ,&nbsp;Arahata Senapati ,&nbsp;Arnab Atta ,&nbsp;Rajaram Lakkaraju","doi":"10.1016/j.jfluidstructs.2024.104126","DOIUrl":null,"url":null,"abstract":"<div><p>In fluid dynamics, a planar starting flow through a narrow slit gives rise to a distinctive fluid mass in the form of counter-rotating vortex pairs, which do not undergo any propulsive detachment, known as ‘pinch-off’, from the tip-attached fluid layer. Our study envisions instigating the ‘pinch-off’ phenomenon in these vortex pairs using flexible plates as the slit edges to enhance momentum transport and self-propagation. In this study, considering a flow evolution model, we show that the growth rate of such ejected vortex pair scales as proportional to the square root of time. Using flexible plates to form the slit, we unearth a critical plate flexibility case with the Cauchy number, <span><math><mrow><mi>C</mi><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span>, which induces a ‘pinch-off’ of the resultant vortex pair, a phenomenon absent in the case of rigid plates. We observe a train of vortex pairs generating one after the other, and the time period closely matches the plates’ oscillation period as the plates’ oscillation frequency locks-in with the shedding frequency of the vortex pairs. The streamwise speed of the leading vortex pair varies non-monotonically with <span><math><mrow><mi>C</mi><mi>a</mi></mrow></math></span>, showing an increase in the speed up to <span><math><mrow><mi>C</mi><mi>a</mi><mo>≈</mo><mn>0</mn><mo>.</mo><mn>04</mn></mrow></math></span>, and thereafter decreased speed due to upstream propagation of small-sized vortices. The new insights into inducing and controlling vortex pair behaviours pave the way for innovative applications in fluid transport and advanced flow manipulation techniques.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000616","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In fluid dynamics, a planar starting flow through a narrow slit gives rise to a distinctive fluid mass in the form of counter-rotating vortex pairs, which do not undergo any propulsive detachment, known as ‘pinch-off’, from the tip-attached fluid layer. Our study envisions instigating the ‘pinch-off’ phenomenon in these vortex pairs using flexible plates as the slit edges to enhance momentum transport and self-propagation. In this study, considering a flow evolution model, we show that the growth rate of such ejected vortex pair scales as proportional to the square root of time. Using flexible plates to form the slit, we unearth a critical plate flexibility case with the Cauchy number, Ca=0.01, which induces a ‘pinch-off’ of the resultant vortex pair, a phenomenon absent in the case of rigid plates. We observe a train of vortex pairs generating one after the other, and the time period closely matches the plates’ oscillation period as the plates’ oscillation frequency locks-in with the shedding frequency of the vortex pairs. The streamwise speed of the leading vortex pair varies non-monotonically with Ca, showing an increase in the speed up to Ca0.04, and thereafter decreased speed due to upstream propagation of small-sized vortices. The new insights into inducing and controlling vortex pair behaviours pave the way for innovative applications in fluid transport and advanced flow manipulation techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用柔性结构生成周期性涡旋对
在流体动力学中,通过狭窄狭缝的平面起始流会以反向旋转涡旋对的形式产生独特的流体质量,这些涡旋对不会从尖端附着的流体层中发生任何推进分离,即所谓的 "掐断"。我们的研究设想利用柔性板作为狭缝边缘,在这些涡旋对中激发 "夹离 "现象,以增强动量传输和自传播。在这项研究中,考虑到流动演化模型,我们发现这种喷射涡旋对的增长率与时间的平方根成正比。利用柔性板形成狭缝,我们发现了一个临界板柔性情况,即考奇数 Ca=0.01,这将导致产生的涡旋对 "掐断",而刚性板则不存在这种现象。我们观察到一列接一列的涡旋对产生,其时间周期与板的振荡周期非常吻合,因为板的振荡频率锁定在涡旋对的脱落频率上。前导涡旋对的流向速度随 Ca 的变化呈非单调变化,在 Ca≈0.04 时速度增加,此后由于小尺寸涡旋的上游传播,速度降低。对诱导和控制涡对行为的新认识为流体传输和先进流动操纵技术的创新应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1