Charles E. Schaefer , Dung Nguyen , Yida Fang , Nicholas Gonda , Chuhui Zhang , Stephanie Shea , Christopher P. Higgins
{"title":"PFAS Porewater concentrations in unsaturated soil: Field and laboratory comparisons inform on PFAS accumulation at air-water interfaces","authors":"Charles E. Schaefer , Dung Nguyen , Yida Fang , Nicholas Gonda , Chuhui Zhang , Stephanie Shea , Christopher P. Higgins","doi":"10.1016/j.jconhyd.2024.104359","DOIUrl":null,"url":null,"abstract":"<div><p>Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000639","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.