Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees

Karthik Menon, Muhammed Owais Khan, Zachary A. Sexton, Jakob Richter, Patricia K. Nguyen, Sachin B. Malik, Jack Boyd, Koen Nieman, Alison L. Marsden
{"title":"Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees","authors":"Karthik Menon, Muhammed Owais Khan, Zachary A. Sexton, Jakob Richter, Patricia K. Nguyen, Sachin B. Malik, Jack Boyd, Koen Nieman, Alison L. Marsden","doi":"10.1038/s44303-024-00014-6","DOIUrl":null,"url":null,"abstract":"Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges – incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. We propose an optimization-based method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00014-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00014-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges – incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. We propose an optimization-based method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合 CT 灌注成像和合成血管树的个性化冠状动脉和心肌血流模型
利用基于临床成像的解剖模型对冠状动脉血流进行计算模拟,是个性化治疗计划的新兴非侵入性工具。然而,目前的模拟面临着两个相关的挑战--由于排除了小于成像分辨率的动脉,基于图像的模型中的解剖结构不完整,以及缺乏由患者特定成像提供的个性化血流分布。我们引入了一个数据化、个性化和多尺度的血流模拟框架,涵盖大冠状动脉到心肌微血管。该框架包括基于图像的冠状动脉解剖,结合成像分辨率以下动脉的合成血管、使用达西模型模拟的心肌血流,以及以块参数网络表示的系统循环。我们提出了一种基于优化的方法,通过同化临床 CT 心肌灌注成像和心功能测量结果来生成特定患者的血流分布和模型参数,从而实现多尺度冠状动脉血流模拟的个性化。通过这项对六名患者进行的概念验证研究,我们发现所提出的个性化框架与纯粹基于解剖学的经验方法在血流分布和临床诊断指标方面存在巨大差异;这些误差无法事先预测。这表明虚拟治疗规划工具将受益于新兴成像方法带来的更多个性化信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers Metabolic nanoscopy enhanced by experimental and computational approaches Ultrahigh-field animal MRI system with advanced technological update Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy Evaluation of the redox alteration in Duchenne muscular dystrophy model mice using in vivo DNP-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1