Spatially correlated classical and quantum noise in driven qubits

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-04-30 DOI:10.1038/s41534-024-00842-9
Ji Zou, Stefano Bosco, Daniel Loss
{"title":"Spatially correlated classical and quantum noise in driven qubits","authors":"Ji Zou, Stefano Bosco, Daniel Loss","doi":"10.1038/s41534-024-00842-9","DOIUrl":null,"url":null,"abstract":"<p>Correlated noise across multiple qubits poses a significant challenge for achieving scalable and fault-tolerant quantum processors. Despite recent experimental efforts to quantify this noise in various qubit architectures, a comprehensive understanding of its role in qubit dynamics remains elusive. Here, we present an analytical study of the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise. Surprisingly, we find that by operating the qubit system at low temperatures, where correlated quantum noise plays an important role, significant long-lived entanglement between qubits can be generated. Importantly, this generation process can be controlled on-demand by turning the qubit driving on and off. On the other hand, we demonstrate that by operating the system at a higher temperature, the crosstalk between qubits induced by the correlated noise is unexpectedly suppressed. We finally reveal the impact of spatio-temporally correlated 1/<i>f</i> noise on the decoherence rate, and how its temporal correlations restore lost entanglement. Our findings provide critical insights into not only suppressing crosstalk between qubits caused by correlated noise but also in effectively leveraging such noise as a beneficial resource for controlled entanglement generation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"61 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00842-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Correlated noise across multiple qubits poses a significant challenge for achieving scalable and fault-tolerant quantum processors. Despite recent experimental efforts to quantify this noise in various qubit architectures, a comprehensive understanding of its role in qubit dynamics remains elusive. Here, we present an analytical study of the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise. Surprisingly, we find that by operating the qubit system at low temperatures, where correlated quantum noise plays an important role, significant long-lived entanglement between qubits can be generated. Importantly, this generation process can be controlled on-demand by turning the qubit driving on and off. On the other hand, we demonstrate that by operating the system at a higher temperature, the crosstalk between qubits induced by the correlated noise is unexpectedly suppressed. We finally reveal the impact of spatio-temporally correlated 1/f noise on the decoherence rate, and how its temporal correlations restore lost entanglement. Our findings provide critical insights into not only suppressing crosstalk between qubits caused by correlated noise but also in effectively leveraging such noise as a beneficial resource for controlled entanglement generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驱动量子比特中空间相关的经典和量子噪声
多个量子比特之间的相关噪声是实现可扩展和容错量子处理器的重大挑战。尽管最近在各种量子比特架构中对这种噪声进行了量化实验,但对其在量子比特动力学中的作用的全面了解仍然遥遥无期。在此,我们对空间相关噪声(包括马尔可夫和非马尔可夫噪声)下的驱动量子比特动态进行了分析研究。令人惊讶的是,我们发现通过在低温下运行量子比特系统(相关量子噪声在其中发挥了重要作用),可以在量子比特之间产生显著的长效纠缠。重要的是,这一生成过程可以通过开启或关闭量子比特驱动按需控制。另一方面,我们证明,通过在较高温度下运行系统,由相关噪声引起的量子位之间的串扰会意外地得到抑制。最后,我们揭示了时空相关 1/f 噪声对退相干率的影响,以及它的时空相关性如何恢复失去的纠缠。我们的发现不仅为抑制相关噪声引起的量子比特间串扰,而且为有效利用这种噪声作为受控纠缠生成的有益资源提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Can quantum computers do nothing? Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1