Fengjiang Wang , Chuchu Rao , Xiaosheng Fang , Yeshen Lan
{"title":"CHEABC-QCRP: A novel QoS-aware cluster routing protocol for industrial IoT","authors":"Fengjiang Wang , Chuchu Rao , Xiaosheng Fang , Yeshen Lan","doi":"10.1016/j.simpat.2024.102951","DOIUrl":null,"url":null,"abstract":"<div><p>Clustering routing protocols currently have problems such as Single point of failure of cluster head nodes, poor network dynamics, uneven data transmission, etc., which are critical to the optimization of energy efficiency, network lifespan and network topology control. However, this optimization problem is an NP hard problem that conventional algorithms are difficult to solve. This paper proposes a new multi-objective cluster routing protocol (CHEABC-QCRP) aimed at optimizing network energy consumption, system lifespan, and quality of services (QoS). The protocol is based on a new chaotic hybrid elite artificial bee colony algorithm (CHEABC) proposed in this paper, which has strong search ability and greatly reduces convergence time. At the same time, a new chaotic strategy was designed to effectively prevent falling into local optima and premature convergence. In simulation experiments, compared with multiple routing protocols, a large number of test results show that this protocol significantly reduces network energy consumption, greatly improves system lifespan, and effectively improves QoS in IWSN.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"134 ","pages":"Article 102951"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000650","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Clustering routing protocols currently have problems such as Single point of failure of cluster head nodes, poor network dynamics, uneven data transmission, etc., which are critical to the optimization of energy efficiency, network lifespan and network topology control. However, this optimization problem is an NP hard problem that conventional algorithms are difficult to solve. This paper proposes a new multi-objective cluster routing protocol (CHEABC-QCRP) aimed at optimizing network energy consumption, system lifespan, and quality of services (QoS). The protocol is based on a new chaotic hybrid elite artificial bee colony algorithm (CHEABC) proposed in this paper, which has strong search ability and greatly reduces convergence time. At the same time, a new chaotic strategy was designed to effectively prevent falling into local optima and premature convergence. In simulation experiments, compared with multiple routing protocols, a large number of test results show that this protocol significantly reduces network energy consumption, greatly improves system lifespan, and effectively improves QoS in IWSN.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.