Yu-yao CHEN , Jin-feng NIE , Yong FAN , Lei GU , Ke-wei XIE , Xiang-fa LIU , Yong-hao ZHAO
{"title":"Enhancing strength–ductility synergy of AlNp/Al composite by regulating heterostructure of matrix grain and particle distribution","authors":"Yu-yao CHEN , Jin-feng NIE , Yong FAN , Lei GU , Ke-wei XIE , Xiang-fa LIU , Yong-hao ZHAO","doi":"10.1016/S1003-6326(23)66453-2","DOIUrl":null,"url":null,"abstract":"<div><p>Three heterostructured AlN<sub>p</sub>/Al composites with different microstructure configurations were fabricated by liquid–solid reaction combined with subsequent thermal-mechanical treatment to obtain a superior strength and ductility combination. The effects of the microstructure configuration including the AlN particle distribution and matrix grain structure on the tensile strength and ductility were studied in detail. The results show that the simultaneous enhancement of tensile strength and ductility can be achieved. The Uniformed-AlN<sub>p</sub>/Al composite with relatively dispersed particles exhibits a superior ultimate tensile strength of ~387 MPa with an elongation to failure of ~9.1%. It shows an outstanding specific tensile strength and elongation combination compared with other reported particle reinforced aluminum matrix composites. Furthermore, the hetero-deformation induced (HDI) stress has been calculated and is shown to increase significantly in the Uniformed-AlN<sub>p</sub>/Al composite. It is revealed that the HDI stress plays a crucial role in the significant enhancement of strength and ductility for the AlN<sub>p</sub>/Al composite.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632623664532/pdf?md5=ef824faadd3fd42be9275a0d3c580d2b&pid=1-s2.0-S1003632623664532-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632623664532","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Three heterostructured AlNp/Al composites with different microstructure configurations were fabricated by liquid–solid reaction combined with subsequent thermal-mechanical treatment to obtain a superior strength and ductility combination. The effects of the microstructure configuration including the AlN particle distribution and matrix grain structure on the tensile strength and ductility were studied in detail. The results show that the simultaneous enhancement of tensile strength and ductility can be achieved. The Uniformed-AlNp/Al composite with relatively dispersed particles exhibits a superior ultimate tensile strength of ~387 MPa with an elongation to failure of ~9.1%. It shows an outstanding specific tensile strength and elongation combination compared with other reported particle reinforced aluminum matrix composites. Furthermore, the hetero-deformation induced (HDI) stress has been calculated and is shown to increase significantly in the Uniformed-AlNp/Al composite. It is revealed that the HDI stress plays a crucial role in the significant enhancement of strength and ductility for the AlNp/Al composite.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.