Frequency-Diverse Antenna With Convolutional Neural Networks for Direction-of-Arrival Estimation in Terahertz Communications

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Terahertz Science and Technology Pub Date : 2024-01-25 DOI:10.1109/TTHZ.2024.3358735
Mingxiang Stephen Li;Mariam Abdullah;Jiayuan He;Ke Wang;Christophe Fumeaux;Withawat Withayachumnankul
{"title":"Frequency-Diverse Antenna With Convolutional Neural Networks for Direction-of-Arrival Estimation in Terahertz Communications","authors":"Mingxiang Stephen Li;Mariam Abdullah;Jiayuan He;Ke Wang;Christophe Fumeaux;Withawat Withayachumnankul","doi":"10.1109/TTHZ.2024.3358735","DOIUrl":null,"url":null,"abstract":"The IEEE 802.15.3d standard for point-to-point wireless terahertz communications is defined to support high-capacity channels. By nature, terahertz signal transmission requires line-of-sight propagation and terahertz communications operates within a challenging power budget limitation. Therefore, accurate and efficient direction-of-arrival (DoA) estimation for maximizing received power becomes paramount to achieve reliable terahertz communications. In this article, we present a frequency-diverse antenna with a machine-learning-based approach utilizing convolutional neural networks (CNNs) to estimate DoA in the terahertz communications band. The antenna is deliberately designed to break symmetry, generating quasi-random radiation patterns, while the CNN captures the relationship between the radiation patterns and their respective angles of arrival. Based on experiments, the DoA estimation results converge to a minimum validation mean squared error of 3.9\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n and root mean squared error of 1.9\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n. The estimation efficacy is further substantiated by a consistent performance demonstrated across diverse scenarios, encompassing various obstacles and absorbers around the propagation path. The proposed DoA estimation method shows considerable advantages as a compact, integrable, and cost-effective solution for practical terahertz communications.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 3","pages":"354-363"},"PeriodicalIF":3.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10414118/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The IEEE 802.15.3d standard for point-to-point wireless terahertz communications is defined to support high-capacity channels. By nature, terahertz signal transmission requires line-of-sight propagation and terahertz communications operates within a challenging power budget limitation. Therefore, accurate and efficient direction-of-arrival (DoA) estimation for maximizing received power becomes paramount to achieve reliable terahertz communications. In this article, we present a frequency-diverse antenna with a machine-learning-based approach utilizing convolutional neural networks (CNNs) to estimate DoA in the terahertz communications band. The antenna is deliberately designed to break symmetry, generating quasi-random radiation patterns, while the CNN captures the relationship between the radiation patterns and their respective angles of arrival. Based on experiments, the DoA estimation results converge to a minimum validation mean squared error of 3.9 $^\circ$ and root mean squared error of 1.9 $^\circ$ . The estimation efficacy is further substantiated by a consistent performance demonstrated across diverse scenarios, encompassing various obstacles and absorbers around the propagation path. The proposed DoA estimation method shows considerable advantages as a compact, integrable, and cost-effective solution for practical terahertz communications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络的频率多样化天线用于太赫兹通信中的到达方向估计
用于点对点无线太赫兹通信的 IEEE 802.15.3d 标准旨在支持大容量信道。从本质上讲,太赫兹信号传输需要视距传播,而且太赫兹通信的功率预算限制极具挑战性。因此,要实现可靠的太赫兹通信,必须进行准确、高效的到达方向(DoA)估计,以最大限度地提高接收功率。在本文中,我们介绍了一种频率多样化天线,它采用基于机器学习的方法,利用卷积神经网络(CNN)来估计太赫兹通信频段中的到达方向(DoA)。天线的设计有意打破对称性,产生准随机辐射模式,而 CNN 则捕捉辐射模式与各自到达角度之间的关系。基于实验,DoA 估计结果收敛到最小验证均方误差 3.9$^\circ$ 和根均方误差 1.9$^\circ$。在不同的场景下,包括传播路径周围的各种障碍物和吸收体,都能表现出一致的性能,这进一步证实了估算的有效性。所提出的 DoA 估算方法作为实用太赫兹通信的一种紧凑、可积分和经济高效的解决方案,显示出相当大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
期刊最新文献
2024 Index IEEE Transactions on Terahertz Science and Technology Vol. 14 Table of Contents IEEE Transactions on Terahertz Science and Technology Information for Authors IEEE Open Access Publishing IEEE Microwave Theory and Techniques Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1