{"title":"Towards the Next Level of Vehicle Automation Through Cooperative Driving: A Roadmap From Planning and Control Perspective","authors":"Haoran Wang;Yongwei Feng;Yonglin Tian;Ziran Wang;Jia Hu;Masayoshi Tomizuka","doi":"10.1109/TIV.2024.3363873","DOIUrl":null,"url":null,"abstract":"Cooperative Driving Automation (CDA) stands at the forefront of the evolving landscape of vehicle automation, elevating driving capabilities within intricate real-world environments. This research aims to navigate the path toward the future of CDA by offering a thorough examination from the perspective of Planning and Control (PnC). It classifies state-of-the-art literature according to the CDA classes defined by the Society of Automotive Engineers (SAE). The strengths, weaknesses, and requirements of PnC for each CDA class are analyzed. This analysis helps identify areas that need improvement and provides insights into potential research directions. The research further discusses the evolution directions for CDA, providing valuable insights into the potential areas for further enhancement and enrichment of CDA research. The suggested areas include: Control robustness against disturbance; Risk-aware planning in a mixed environment of Connected and Automated Vehicles (CAVs) and Human-driven Vehicles (HVs); Vehicle-signal coupled modeling for coordination enhancement; Vehicle grouping to enhance the mobility of platooning.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 3","pages":"4335-4347"},"PeriodicalIF":14.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10428059/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperative Driving Automation (CDA) stands at the forefront of the evolving landscape of vehicle automation, elevating driving capabilities within intricate real-world environments. This research aims to navigate the path toward the future of CDA by offering a thorough examination from the perspective of Planning and Control (PnC). It classifies state-of-the-art literature according to the CDA classes defined by the Society of Automotive Engineers (SAE). The strengths, weaknesses, and requirements of PnC for each CDA class are analyzed. This analysis helps identify areas that need improvement and provides insights into potential research directions. The research further discusses the evolution directions for CDA, providing valuable insights into the potential areas for further enhancement and enrichment of CDA research. The suggested areas include: Control robustness against disturbance; Risk-aware planning in a mixed environment of Connected and Automated Vehicles (CAVs) and Human-driven Vehicles (HVs); Vehicle-signal coupled modeling for coordination enhancement; Vehicle grouping to enhance the mobility of platooning.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.